
 
GRAU Archive Manager 

 
HSMAPI– HSMAPI Specification Techical Reference - 
Specification 

 

 

12.03.2009 GRAU Data AG Page 1 of 20 
 Confidential 

  

  

GGRRAAUU  AArrcchhiivvee  MMaannaaggeerr  

  

HHSSMMAAPPII  

HHSSMMAAPPII  SSppeecciiffiiccaattiioonn  TTeecchhiiccaall  RReeffeerreennccee  

 

Produced by Eberhard Leba 

Checked by Ulrich Lechner  

Version 1  

Created on 07.Jan.2009 

Updated on 9-Mar-09 

Approved by Ulrich Lechner 

Archived on D:\projects\cvshsl\GAM\SNAPPER\ivd-
doc\Project\snapper\concepts\HSMAPISPEC.doc 

 

Abstract: 

This HSMAPI specification document describes the public interface to the GRAU Archive 
Manager software. 



 
 

GRAU Archive Manager 
 

HSMAPI – HSMAPI Specification Techical Reference - 
Specification 

 

Page 2 of 20 GRAU Data Storage AG 12.03.2009 
 Confidential 



 
GRAU Archive Manager 

 
HSMAPI– HSMAPI Specification Techical Reference - 
Specification 

 

 

12.03.2009 GRAU Data AG Page 3 of 20 
 Confidential 

Table of contents 

1 HSMAPI Versioning 5 

2 API Definition 7 
Overview 7 
Helper Functions 1.0 8 
HSMAPI 1.0 8 

Class Properties ...............................................................................................8 
Class Methods ................................................................................................. 8 

GetHsmApiVersion 1.0 ...................................................................................8 
GetHsmVersion 1.0........................................................................................8 

Partition 9 
Structure definitions.......................................................................................10 

LocationData 1.0.........................................................................................10 
MediaData 1.0 ............................................................................................11 
FielData 1.0................................................................................................12 

Class Methods ...............................................................................................14 
GetPathSeparator 1.0 .................................................................................. 14 
GetMountPoint 1.0.......................................................................................14 
GetPartitionStatus 1.0.................................................................................. 14 
LocalPath2HSM 1.0......................................................................................14 
MigrateFile 1.0............................................................................................14 
CreateMajorCollocationID 1.0 ....................................................................... 15 
EnumMinorCollocatioID 1.0........................................................................... 16 
JobStatus 1.0 .............................................................................................16 
GetFileStatus 1.1 ........................................................................................16 
GetFileLocations 1.0 .................................................................................... 16 
GetVolumeList 1.0, 1.1 ................................................................................ 16 
GetVolumeFileList 1.1 .................................................................................. 17 
ReorgScan 1.1 ............................................................................................17 
ReorganizeMedium 1.1................................................................................. 17 

3 References 20 

 



 
 

GRAU Archive Manager 
 

HSMAPI – HSMAPI Specification Techical Reference - 
Specification 

 

Page 4 of 20 GRAU Data Storage AG 12.03.2009 
 Confidential 

Document history 

Date Version Author Description 

07.01.2009 Draft Eberhard 
Leba 

Fixed CI settings. Added additional parameters 
for HSMAPI constructor 

    

    

    

    

 

 



 
GRAU Archive Manager 

 
HSMAPI– HSMAPI Specification Techical Reference - 
Specification 

 

 

12.03.2009 GRAU Data AG Page 5 of 20 
 Confidential 

1 HSMAPI Versioning 

HSMAPI development is done in several steps to get productive as soon as possible. Furthermore we 
requests for new member functions drop in and HSMAPI versioning is provided to provide the 
information whether a particular function will be available or not. 

An application should first check the HSMAPI version before assuming a function to be available. Below 
we list the functions that will be available in a particular version. 

 

Item/ Version 1.0 1.1 

HSMAPI Class X X 

GetHsmApiVersion X X 

GetHsmVersion X X 

   

Partition Class X X 

GetPathSeparator X X 

GetMountPoint X X 

GetPartitionStatus X X 

LocalPath2HSM X X 

MigrateFile X X 

CreateMajorCollocationID X X 

EnumMinorCollocatioID X X 

JobStatus X X 

GetFileStatus  X 

GetFileLocations X X 

GetVolumeList  X 

GetVolumeFileList  X 

ReorgScan  X 

ReorganizeMedium  X 

 

 



 
 

GRAU Archive Manager 
 

HSMAPI – HSMAPI Specification Techical Reference - 
Specification 

 

Page 6 of 20 GRAU Data Storage AG 12.03.2009 
 Confidential 

 



 
GRAU Archive Manager 

 
HSMAPI– HSMAPI Specification Techical Reference - 
Specification 

 

 

12.03.2009 GRAU Data AG Page 7 of 20 
 Confidential 

2 API Definition  

Overview 

The API is delivered on the base of C++ as DLL (Dynamic Link Library) in Windows environments and 
so (shared object) in linux environments. It contains the base HSMAPI class encapsulating important 
configuration parameters as e.g the API version or the GAM version of the target system. The HSMAPI 
class instantiates a GAM Server object. The name of the server is provided as a parameter to the class.  

The x.x information provided in the topic reflects the API version providing the method or feature  

All methods just returning a class attribute return the attribute itself as a literal value. A Returned 
uint64 value represents an error code if it is not zero.  

IN, OUT, INOUT Definitions  

IN :   Input parameter  
OUT :   Output parameter  
INOUT :  Input and Output parameter  

Results are returned in the variables marked as OUT or INOUT.  

Strings are always coded in UTF8 code set. 

File names provided to and returned form HSMAPI are full qualified local path including the mount point 
and based on the reference mount point of the application client system.  

The reference mount point is provided at instantiation of the HSMpartition object together with its HSM 
reference path equivalent. The mount point of the HSM file system must be part of the HSM reference 
path.   

This mount point could be obtained from the HSMAPI. The file name must not have a leading path 
separator.  

Example 

GAM Client:  C:\hsm\hsmfs1\share1\dir1\dir11\file1.txt 
Mount point: C:\hsm\hsmfs1 
View on the Application server 
             C:\app\dir1\dir11\file1.txt 
Path provided to HSMAPI: 
             C:\app\dir1\dir11\file1.txt 
Instantiation: 
  Reference mount point: C:\hsm\app 
  HSM Reference path: C:\hsm\hsmfs1\share1 

The path separators used are handled by  HSMAPI.  

Example 

GAM Client:  /usr/local/hsm/hsmfs1/share1/dir1/dir11/file1.txt 
Mount point: /usr/local/hsm/hsmfs1 
View on the Application server 
             C:\app\dir1\dir11\file1.txt 
Path provided to HSMAPI: 
             C:\app\dir1\dir11\file1.txt 



 
 

GRAU Archive Manager 
 

HSMAPI – HSMAPI Specification Techical Reference - 
Specification 

 

Page 8 of 20 GRAU Data Storage AG 12.03.2009 
 Confidential 

Partition methods that change or query file system related information need to check that the partition 
has the status „mounted“. Those methods return ie_NOMOUNT if the partition is not in the mounted 
state. 

Helper Functions 1.0 

Since instantiation of a class returns the class itself the HSMAPI provides a helper function to gather 
the returncode of the instatiation itself. 

// Function returns the last error and clears the error variable 

HSMAPI_API UInt64_t HsmGetLastError( void ); 

If this function returns a non zero value a class was not fully instantiated and is not usable. The class 
object however may exist in that case. 

HSMAPI 1.0  

class hsmapi(IN const char *aServerAdress, IN const char *aHostname, IN const char *aLogDir )  

aServerAdress: Host name identifying the server on the network. Note that HSMAPI uses CORBA 
(omniORB) to communicate to the server. If there is any onmiORB.cfg profile on the system using the 
API, check that the profile provides a communication path to the GAM server.  

aHostname: The name of the host HSMAPI is running on. 

aLogDir: The directory where the GAM Logs should be put to. GAM creates files named “ivd.log” and 
“error.log” in this directory. 

Class Properties  

There are no public class properties exported  

Class Methods  

GetHsmApiVersion 1.0  

string GetHsmApiVersion( void )  

GetHsmVersion 1.0  

string GetHsmVersion( void )  

 



 
GRAU Archive Manager 

 
HSMAPI– HSMAPI Specification Techical Reference - 
Specification 

 

 

12.03.2009 GRAU Data AG Page 9 of 20 
 Confidential 

Partition  

class HsmPartition(IN hsmapi& hsm,  
                               IN const string& aPartitionName, 
                               IN const string& aRefPath,  
                               IN const string& aHSMRefPath)  

hsm : Previously instantiated hsmapi object. 

aPartitionName: GAM Partition name  

aRefPath: Local reference mount point where the GAM partition share is mounted 

aHSMRefPath: HSM reference path, the equivalent for aRefPath on the GAM system. The HSMFS  
                          mountpoint must be a subset of that path. HSMAPI will otherwise return  
                          ie_INVALID_ARG on the mandatory HsmGetLastErro()  call. 

Note:  If the HsmGetLastErro() call  returns  a non zero  value, the partition object  is not usable. Please 
abort the operation and delete the instance in this case.  



 
 

GRAU Archive Manager 
 

HSMAPI – HSMAPI Specification Techical Reference - 
Specification 

 

Page 10 of 20 GRAU Data Storage AG 12.03.2009 
 Confidential 

Structure definitions  

LocationData 1.0  

typedef struct LocationData { 

 UInt64_t ui64MediumId;         // index of the medium in the GAM system  

 string   aBarcode;             // Barcode label 

 UInt64_t ui64Volume;           // index of the media volume or virtual volume  

 UInt64_t ui64NominalCapacity;  // native nominal capacity of the medium  

 UInt64_t usedCapacity;         // occupied capacity in mega byte  

 UInt64_t SlackSpace;           // capacity that could be gained in a reorganization  

 UInt64_t MediaStatus;          // Status flags of the whole medium vector  

 UInt64_t CollocationIdMajorList; // list of collocation groups held by the   

                                // data on the volume  

 vector <UInt64_t> aui64CollocationIdMinorList; // list of collocation sets held by the 

                                // data on one volume  

} LocationData_t, *LocationData_pt; 



 
GRAU Archive Manager 

 
HSMAPI– HSMAPI Specification Techical Reference - 
Specification 

 

 

12.03.2009 GRAU Data AG Page 11 of 20 
 Confidential 

 

MediaData 1.0  

typedef struct MediaData { 

 UInt64_t ui64MediumId;         // index of the medium in the GAM system  

 string Barcode;                // Barcode label  

 UInt64_t ui64Volume;           // index of the media volume or virtual volume  

 UInt64_t ui64NominalCapacity;  // native nominal capacity of the medium  

 UInt64_t ui64usedCapacity;     // occupied capacity in mega byte  

 UInt64_t ui64SlackSpace;       // capacity that could be gained in a reorganization 

 UInt64_t ui64MediaStatus;      // Status flags of the whole medium  

 vector <UInt64_t> aui64CollocationIdMajorList; // list of collocation groups held by 

                                // the  data on the volume  

 vector <UInt64_t> aui64CollocationIdMinorList; // list of collocation sets held by the 

                                //data on one volume 

} MediaData_t, *MediaData_pt; 



 
 

GRAU Archive Manager 
 

HSMAPI – HSMAPI Specification Techical Reference - 
Specification 

 

Page 12 of 20 GRAU Data Storage AG 12.03.2009 
 Confidential 

FielData 1.0  

typedef struct FileData { 

 string Filename;               // full qualified path relative to the GAM mountpoint   

                                // without leading path separator 

 vector <LocationData_t> locationdata; // Positions of the file in the back endstorage 

} FileData_t, FileData_pt;



 
GRAU Archive Manager 

 
HSMAPI– HSMAPI Specification Techical Reference - 
Specification 

 

 

12.03.2009 GRAU Data AG Page 13 of 20 
 Confidential 

Class Properties  

There are no public properties exported. 



 
 

GRAU Archive Manager 
 

HSMAPI – HSMAPI Specification Techical Reference - 
Specification 

 

Page 14 of 20 GRAU Data Storage AG 12.03.2009 
 Confidential 

Class Methods  

GetPathSeparator 1.0  

string GetPathSeparator( void )  
get the path separator  

GetMountPoint 1.0  

string GetMountPoint( void )  
get the mountpoint on the GAM client system  

GetPartitionStatus 1.0  

string GetPartitionStatus( void )  
get the current status of a GAM partition  

LocalPath2HSM 1.0 

string LocalPath2HSM(const string localpath) 

returns the HSMFS representation of a local path. 

MigrateFile 1.0 

UInt64_t MigrateFile( IN const string& localpath, OUT vector <string> JobIDList, UInt64_t 
flags)  
UInt64_t MigrateFile(IN const string& localpath, IN UInt64_t MajorCollocationID,  
                                 IN UInt64_t MinorColocationID, IN UInt64_t flags,  
                                 OUT vector <string>& JobIDList)  
 
Migrates one or more files, matching the pattern of the given path to one or more volumes not being 
part of another collection set bound to the collocation set specified by the MinorColocationID and the 
MajorCollocationID. Migration in terms of GAM means copying the data to the back end storage 
locations. Only files in unknown or dirty status are migrated. Online or offline files are ignored ( 
because the copies on the backend storage are already in place).  

path: full qualified path based on the content of szMountPoint without leading path separator  

MinorCollocationID: Identifier for a collocation set defined by the application. If the 
MinorCollocationID does not yet exist in the system it searches for a new free volume for each copy to 
place the migration there. If the MinorCollocationID exists, it uses the volume where the last data of 
that particular MinorCollocationID has been placed before. If there is no free volume available for one 
of the required copies the EXCLUSIVE_VOLUME_USAGE flags are checked and based on that the 
operation is rejected with E_NO_VOLUME_AVAILABLE error code. No migration will take place at all in 
this case. Otherwise the system places the new collocation set on the volume where the last data for 
members of this MajorCollocationID has been placed. The MinorCollocationID then becomes 
automatically a member of the group spcified by the MajorCollocationID. If members of the 
MajorCollocationID exist on more than one volume it checks the occupation of those volumes and uses 
the volume with the most free space. If the system is allowed to place the new collocation set 
anywhere it checks the occupation of the volumes and uses the volume with the most free space.  

MajorCollocationID: The mandatory Identifier for a collocation group. The parameter has an effect 
only for the new invented MinorCollocationID. Use create MajorCollocationID method to create a new 
MajorCollocationID.  

JobIDList: List of job IDs generated as a result of this migration call. The migration jobs are running 
asynchronously. Multiple calls using the same pattern in a row while previous migration jobs are not 



 
GRAU Archive Manager 

 
HSMAPI– HSMAPI Specification Techical Reference - 
Specification 

 

 

12.03.2009 GRAU Data AG Page 15 of 20 
 Confidential 

finished yet may lead to multiple migrations of the same Data. The application needs to make sure that 
all corresponding jobs have finished before issuing such a call.  

Flags: Options to be set for the migration call  

HSM_RECURSIVE : 
A tree walk should take place to collect all matching files below the given directory.  

HSM_EXCLUSIVE_VOLUME_USAGE_MINOR_ALLMEDIA :  
In case a new MinorCollocation ID is invented and there is no new volume of any type available 
to exclusively hold the items of a migration of that collocation the method returns 
E_NO_VOLUME_AVAILABLE error code immediately. This flag is a superset of any 
EXCLUSIVE_VOLUME_USAGE_MINOR flag. The application may then decide how to 
proceed. The flag has an effect in that particular case only. If a medium volume runs out of 
space during migration and there is no new volume available the job will be waiting for 
resources. Once the administrator has added a new free volume the job will write the data and 
finish.  

HSM_EXCLUSIVE_VOLUME_USAGE_MAJOR_ALLMEDIA :  
In case a new MinorCollocation ID is invented and there is no new volume of any type available 
to exclusively hold the items of a migration of that collocation in the group specified by the 
MajorCollocationId the method returns E_NO_VOLUME_AVAILABLE error code immediately. This 
flag is a superset of any EXCLUSIVE_VOLUME_USAGE_MAJOR flag. The application may 
then decide how to proceed. The flag has an effect in that particular case only. If a medium 
volume runs out of space during migration and there is no new volume available the job will be 
waiting for resources. Once the administrator has added a new free volume the job will write the 
data and finish. 

HSM_EXCLUSIVE_VOLUME_USAGE_MINOR_DISKMEDIA : 
In case a new MinorCollocation ID is invented and there is no new volume of type disk media 
in the group specified by the MajorCollocationId available to exclusively hold the items of a 
migration of that Minor collocation ID the method returns E_NO_VOLUME_AVAILABLE error code 
immediately. The application may then decide how to proceed. The flag has an effect in that 
particular case only. For additional copies the system is allowed to place the collocation set 
anywhere on a media type other then disk but near members of the MajorCollocationID group. 
If a medium volume runs out of space during migration and there is no new volume available 
the job will be waiting for resources. Once the administrator has added a new free volume the 
job will write the data and finish. 

HSM_EXCLUSIVE_VOLUME_USAGE_MAJOR_DISKMEDIA : 
In case a new MinorCollocation ID is invented and there is no new volume of type disk media 
available to exclusively hold the items of a migration of that Minor collocation ID the method 
returns E_NO_VOLUME_AVAILABLE error code immediately. The application may then decide 
how to proceed. The flag has an effect in that particular case only. For additional copies the 
system is allowed to place the collocation set anywhere on a media type other then disk but 
near members of the MajorCollocationID group. If a medium volume runs out of space during 
migration and there is no new volume available the job will be waiting for resources. Once the 
administrator has added a new free volume the job will write the data and finish.  

CreateMajorCollocationID 1.0  

UInt64_t CreateMajorCollocationID(UInt64_t MajorCollocationID, UInt64_t 
MinimumGroupSize )  
This method creates a MajorCollocationID to build up a collocation group. If the MajorCollocationID 
already exist an error code E_GROUP_EXISTS is returned. If the MinimumGroupSize Parameter is non 
zero it specifies the minimum Size of a Group, it uses a default size defined during GAM setup 



 
 

GRAU Archive Manager 
 

HSMAPI – HSMAPI Specification Techical Reference - 
Specification 

 

Page 16 of 20 GRAU Data Storage AG 12.03.2009 
 Confidential 

otherwise.  The system virtually allocates enough volumes on each media pool of a GAM partition so 
that the given size fits in. Note that the size of the group may grow as long as there are enough free 
non assigned volumes. If the system runs out of media in one of the pools during migration the system 
will wait for resources. The system writes a warning into its log each time it allocates a new free 
volume for the group, reminding the administrator to provide new media.  

MajorCollocationID: Identifier for a new collocation group.  

MinimumGroupSize: Minimum .size of a collocation group in Megabyte  

EnumMinorCollocatioID 1.0 

UInt64_t EnumMinorCollocatioID( IN UInt64_t MajorCollocationID,  
                                                           OUT vector <UInt64_t>& aMinorCollocationIDList )  
Enumerates all MinorCollocationIDs grouped in a MajorCollocationID.  

MajorCollocationID: Identifier for a collocation group.  

MinorCollocationIDList: List of identifiers for collocation sets.  

JobStatus 1.0  

UInt64_t JobStatus( IN vector <string> JobIDList, OUT vector <UInt64_t>& aStatusList )  
Returns the status of the jobs in the given list ( pending, waiting for resources, in progress, finished, 
unknown ) The status values are ordered in the same sequence as the job IDs in the input list. If a job 
does not yet exist or has vanished in the meantime a status unknown is returned in the list.  

JobIDList: A list of job IDs to be queried.  

StatusList: A list of job stati ordered in the same sequence as the JobIDList.  

GetFileStatus 1.1  

UInt64_t GetFileStatus( IN const string& localFilePath, OUT UInt64_t & status )  
Returns the status of a given file ( unknown, dirty, online, offline )  

LocalFilePath: full qualified local path.  

status : a literal reflecting the status of the given file.  

GetFileLocations 1.0  

UInt64_t GetFileLocations( IN const string LocalFilePath&, OUT vector <LocationData_t>& 
aLocationData)  
Returns all the locations of the last generation of a given File on the backend storage.  

LocalFilePath: full qualified local path.  

LocationData: structure holding the location data of a file  

GetVolumeList 1.0, 1.1  

Available with 1.0 :  
UInt64_t GetVolumeList( OUT vector <MediaData_t>& aMediaData  )  
UInt64_t GetVolumeListMinor( IN UInt64_t MinorCollocationID, OUT vector 
<MediaData_t>& aMediaData )  
Available with 1.1 :  
uint64 GetVolumeListMajor( IN uint64 MajorCollocationID, OUT vector <MediaData_t>& 
aMediaData )  



 
GRAU Archive Manager 

 
HSMAPI– HSMAPI Specification Techical Reference - 
Specification 

 

 

12.03.2009 GRAU Data AG Page 17 of 20 
 Confidential 

GetVolumeList enumerates all media volumes belonging to a partition. The GetVolumeListMinor returns 
the list of volumes just containing data of that collocation ID. The GetVolumeListMajor returns the list 
of all volumes containing data in the group defined by the MajorCollectionID. If the collocation ID is 
unknown to the system an empty list is returned. There is no error code returned in this particular 
case.  

aMediaData: List of structures holding the data of a media volumes including the status and meta 
data of the media the volume is located in.  

MajorCollocationID: Identifier for a collocation group.  

MinorCollocationID: Identifier for a collocation set.  

GetVolumeFileList 1.1  

UInt64_t GetVolumeFileList(IN uint64 MediumID, IN uint64 volumeID, OUT vector 
<fileData_t>&  a fileData )  
Returns all files currently located on the given volume. Note that the file in the list may have only an 
older generation or a split located on this volume. A generation is hereby an older version of a file that 
has been once overwritten. A split is a part of a file, because the file did not fit into the volume as a 
whole at all or into the remaining space of a volume. The list returned may be rather huge holding 
millions of files.  

MediumID : index of the medium the volume is located on.  

volumeID : index of the media volume of interest.  

aFileData: List of structures holding the file related information  

ReorgScan 1.1  

UInt64_t ReorgScan( void )  
Scans the GAM internal database (FSC) to get reorganisation statistics for each media volume located 
in a partition. The result could be enumerated using the GetVolumeList methods. A call of this method 
is mandatory for a later call of the ReorganizeMedium method. It prepares internal lists required for the 
reorganization process for each particular volume.  

ReorganizeMedium 1.1  

UInt64_t ReorganizeMedium( IN UInt64_t MediumId )  
UInt64_t ReorganizeMedium( IN UInt64_t MediumId, IN UInt64_t volumeID )  
Reorganizes a medium as a whole including all media volumes located on that medium if the media 
volume is not provided. In this case as a result the medium is initialized and marked free. In case a 
VolumeID was given, just that volume will be reorganized and finally initialized. During the 
reorganization process all data that has been identified as still valid will be migrated to other volumes. 
The call of this method requires that the ReorgStat method has been called upfront and that there was 
no append to the medium data in the mean time. If this condition is not met an error code will be 
returned.  

MediumID : index of the medium to be reorganized.  

volumeID : index of the media volume to be reorganized.  

 



 
 

GRAU Archive Manager 
 

HSMAPI – HSMAPI Specification Techical Reference - 
Specification 

 

Page 18 of 20 GRAU Data Storage AG 12.03.2009 
 Confidential 

 



 
GRAU Archive Manager 

 
HSMAPI– HSMAPI Specification Techical Reference - 
Specification 

 

 

12.03.2009 GRAU Data AG Page 19 of 20 
 Confidential 

 

 

 



 
 

GRAU Archive Manager 
 

HSMAPI – HSMAPI Specification Techical Reference - 
Specification 

 

Page 20 of 20 GRAU Data Storage AG 12.03.2009 
 Confidential 

3 References 
[1] GAM user documentation  3.5.0 

[2] Collocation FURPS Document 

[3] Collocation ERS Document 

 


