ONX

Manual

QNX Software Systems Ltd.

175 Terence Matthews Crescent
Kanata, Ontario

K2M 1wW8

Canada

\oice: +1 613 591-0931

Fax: +1 613 591-3579

Email: info@qgnx.com

Web: http://iwww.gnx.com/

O QNX Software Systems Ltd. 1999

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mecharopginghcgoording, or otherwise
without the prior written permission of QNX Software Systems Ltd.

Although every precaution has been taken in the preparation of this book, we assume no responsibility for any errors or omissions, nor do welagsanualisbges resulting
from the use of the information contained in this book.

Publishing history
November 1999 Pre-Alpha edition

QNX is a registered trademark of QNX Software Systems Ltd.

All other trademarks and registered trademarks belong to their respective owners.
Cover art by ?2???2.

Printed in Canada.

Part Number: ?22?7?

Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Introduction to Neutrino Device Drivers vii

Audio driver iX
Block I/O driver iX
Character I/O driver iX

Flash filesystem driver X
Graphics driver X

Input driver X

Media players X
Network driver X

PCI Xi

USB drivers Xi
Understanding drivers in Neutrino

Duties of a driver Xi

How a driver fits into the system
Typographical conventions xiv

Audio Drivers 1
Audio Drivers 3

Block 1/O Drivers 5
Block I/O drivers 7

Character I/O Drivers 9
Character I/O drivers 11

Xi

Xii

Contents il

Chapter 5

Chapter 6

Chapter 7

Chapter 8

iV Contents

Flash Filesystem Drivers 13
Flash Filesystem Drivers 15

Graphics Drivers 17
Graphics drivers 19

Graphics drivers in the Photon environment 19

Writing your own driver 20
The “Big Picture” 21
Binding your driver to the graphics framework
Conventions 28
The big picture 60

Utility Functions 77
Display driver utilities 78
PCI configuration access utilities 79
Memory manager utilities 81
Video memory management utilities 84
Graphics helper utilites 86

PETE — Photon 1.XX drivers 91

PETE — New API features 91

Input Devices 93
Input drivers 95
Types of event bus lines 95
Modules 96
Interface to the system 97
Source file organization fatevi —* 98
Writing an input driver 99

Media Players 101
Media Players 103
Using the supplied plugins — writing your own player
Writing your own media plugin - 104
Binding to the player 104

27

103

Chapter 9

Chapter 10

Chapter 11

Appendix A

Network Drivers 113
Network Drivers 115

The big picture 116
The lifecycle of a packet 118
The details 121
Writing your own driver 122
Binding toio -net 123
Tellingio —net about our functions 125
Advertising the driver’'s capabilities o —net
Receiving data and giving it to a higher level
Transmitting data to the hardware 132
The details 133
Binding your driver tdo -net 133
Thenpkt _t datatype 146

PCI Drivers 151
PCl drivers 153

USB Drivers 155
USB drivers 157

Overview 157
USB Driver Library reference 158

Functions by category 159

Alphabetical listing of functions and structures
USB Skeleton Driver 178

References 183

References 185
Audio driver references 185
Block I/O driver references 185
Character I/O driver references 185
Graphics driver references 185
Network driver references 185

128
131

160

Contents

\Y

PCI driver references 185
USB driver references 185

Glossary 187

Vi Contents

Chapter 1

Introduction to Neutrino Device
Drivers

In this chapter. ..

Understanding drivers in Neutrino
Typographical conventions

Chapter 1 e Introduction to Neutrino Device Drivers Vil

Audio driver

Block I/O driver

Character I/10
driver

Here are the types of drivers we'll be discussing in this book:

e Audio driver

e Block I/O driver

e Character I/O driver
e Flash filesystem driver
e Graphics driver

e Input driver

e Media players

e Network driver

e PCI

e USB drivers

An audio driver serves to decouple a particular implementation of a
sound card from the generic APIs for sound support. The audio driver
operates in its own independent process and conforms to the API
outlined in the ALSA (“Advanced Linux Sound Architecture”)
specification.

The block I/O driver is responsible for providing a CAM-compatible
interface to a block-oriented storage medium. The driver is
implemented as a DLL that gets bound in with the filesystem
components at runtime.

Character I/O drivers are responsible for providing standard,
POSIX-API compatible interfaces to devices that operate on a
character-by-character basis (examples include serial ports, parallel
ports, and pseudo-tty’s). Neutrino ships with a character I/O library
that performs much of the common functions, such as interpreting
editing characters, maintaining input and output buffers, and so on.
The part of the driver that you supply deals almost exclusively with
the hardware or device.

Chapter 1 o Introduction to Neutrino Device Drivers X

X

Flash filesystem
driver

Graphics driver

Input driver

Media players

Network driver

Flash filesystems are responsible for organizing raw flash memory
devices into a filesystem.

Graphics drivers are responsible for providing a set of proprietary
APIs for the various GUI products we offer for Neutrino.

An input driver is the piece of software that goes between an input
device, (keyboards, mice, etc.) and a piece of higher-level software,
like the Photon GUI.

Neutrino allows you to write your own media plugin modules that the
standarcbhplay command can use, or you can write your own player
as well. This chapter shows you how to do both.

Network drivers actually fall into the following classes:

e hardware interface
e qgnet protocol stacks
e custom protocol stacks

e @@@ others? @@@

A network driver that provides a hardware interface is responsible for
presenting an abstract view of the networking hardware so that other
QSSL-supplied components (such as the TCP/IP stack, for example)
can function. @ @@ how much is provided by libs? @@ @

For native Neutrino networking, thgnet native networking manager
relies on protocol stacks that may or may not be based on TCP/IP. For
example, you may have several machines connected via a proprietary
backplane in a VLAN configuration, and you may need to write a
customized protocol driver for the VLAN.

If you're providing a custom protocol stack that uses an existing
driver, then you’ll need to know about the hooks provided in
Neutrino’s networking framework for this purpose.

Chapter 1 e Introduction to Neutrino Device Drivers

Understanding drivers in Neutrino

PCI

USB drivers

Duties of a driver

@@@ noidea @@@

The Universal Serial Bus (USB) drivers are responsible for providing
sub-devices on the USB. Neutrino ships with a base USB driver that
talks to the USB hardware on the bus; you may wish to provide
support through that driver to USB devices on the USB bus. @@ @
what do we provide? @@ @

Understanding drivers in Neutrino

For each type of driver, we’ll examine in detail:

e the overall duties of the driver
e how it fits into a Neutrino system

e what parts of the driveyouhave to provide and what parts are
“standard”

e the interfaces between:

- the driver and its clients
- the part that you write and the standard libraries

e hints on how to make your driver faster, smaller, better
e how to debug your driver
e common pitfalls

e acomplete driver, in source form, analyzed step-by-step.

At the highest level, a driver is something that provides a service.
Some drivers may be standalone processes, while others may be
integrated into other processes (via a DLL).

The driver is responsible for handling the details of a particular piece
of hardware, a protocol, a filesystem, or some other abstract service.

Chapter 1 e Introduction to Neutrino Device Drivers Xi

Understanding drivers in Neutrino

Xii

How a driver fits
into the system

Resource managers

The goal of a driver is to provide a consistent interface to these
services, so that client programs can simply use the service without
having to be intimately involved in the details of the service itself.

For example, an audio driver is responsible for the details of the audio
card and presents a simple interface to the audio subsystem that
clients can use. A client program wants onlyofpen()an abstract

audio device angrite() audio data — the client doesn’t want to

worry about manipulating the hardware of the audio device, handling
interrupts, dealing with DMA transfers, etc.

As another example, consider a graphics driver. Although the
interface between the driver and the GUI may be more complicated
than that provided by the audio driver, the principal is the same —
clients want to be able to draw lines, polygons, filled areas, etc.,
without explicit knowledge of the underlying hardware
implementation.

A client program can access the services of a driver through an API.
In some cases, the API is defined by POSIX (for example, if you're
using a serial port, then you'd use standard callsdigen() devctl()
read(), write(), etc.). In other cases, the APl is a de facto standard
(such as Linux’s ALSA — “Advanced Linux Sound Architecture”),

and in still other cases the APl is proprietary (as in the case of
Photon). Regardless of its nature, the APl is usually implemented via
message passing at some level. In this manual we assume you have a
good understanding of the concepts of Neutrino’s message-passing
services; if not, take a look at the References appendix for some
additional reading material.

If the driver you're designing is accessed by a standard POSIX AP,
then you'll also want to be familiar with Neutrino’s “resource
managers.” A resource manager is a server that accepts certain,
well-defined messages and handles them in certain, well-defined
ways. Neutrino ships with a library that aids in the creation of
resource managers. Again, the References appendix will be helpful
here.

Chapter 1 e Introduction to Neutrino Device Drivers

Understanding drivers in Neutrino

If you're already familiar with drivers under other operating systems,
then you'll want to pay particular attention to the following points,
which highlight some of the unique characteristics of Neutrino
drivers:

e adriver isnotbound into the kernel
e adriver operates in the context of a process
e adriver can be started and stopped on the fly

e adriver communicates via message passing,
o @@@ others @@@

@@ @ Let’s talk about these characteristics in more detail, eh?

Chapter 1 e Introduction to Neutrino Device Drivers Xiii

Typographical conventions

Xiv

Typographical conventions

Throughout this manual, we use certain typographical conventions to
distinguish technical terms. In general, the conventions we use
conform to those found in IEEE POSIX publications. The following

table summarizes our conventions.

Reference Example

Code examples if(stream == NULL)
Command options -IR

Commands make

Environment variables PATH

File and pathnames /dev/null

Function names exit()

Keyboard chords
Keyboard input
Keyboard keys

Program output

Ctrl — Alt — Delete
something you type
Enter

login:

Programming constants NULL

Programming data typesunsigned short

Programming literals

Variable names

OxFF, "message string"

stdin

Single-step instructions are formatted like this:

O To reboot your computer, pre€srl — Alt — Shift — Delete.

Chapter 1 e Introduction to Neutrino Device Drivers

Typographical conventions

> P .

Notes, cautions, and warnings are used to highlight important
messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that
may have unwanted or undesirable side effects.

WARNING: Warnings tell you about commands or procedures
that could be dangerous to your files, your hardware, or even
yourself.

Chapter 1 e Introduction to Neutrino Device Drivers =~ XV

Chapter 2

Audio Drivers

In this chapter. ..

Audio Drivers

Chapter 2 e Audio Drivers 1

Audio Drivers

Audio Drivers

This chapter describes the audio driver in detail.

Chapter 2 e Audio Drivers 3

Chapter 3

Block I/O Drivers

In this chapter. ..
Block I/O drivers

Chapter 3 e Block I/O Drivers 5

Block I/O drivers

Block 1/O drivers

This chapter describes the block I/O drivers in detalil.

Chapter 3 e Block I/O Drivers 7

Chapter 4

Character I/O Drivers

In this chapter. ..

Character /O drivers

Chapter 4 e Character I/O Drivers 9

Character I/O drivers

Character 1/O drivers

This chapter describes the character I/O drivers in detalil.

Chapter 4 e Character I/O Drivers 11

Chapter 5

Flash Filesystem Drivers

In this chapter. ..

Flash Filesystem Drivers

Chapter 5 e Flash Filesystem Drivers 13

Flash Filesystem Drivers

Flash Filesystem Drivers

This chapter describes the flash filesystem driver in detail.

Chapter 5 o Flash Filesystem Drivers 15

Chapter 6

Graphics Drivers

In this chapter. ..

Graphics drivers

Writing your own driver
Utility Functions

PETE — Photon 1.XX drivers
PETE — New API features

Chapter 6 o Graphics Drivers 17

Graphics drivers

Graphics drivers
in the Photon
environment

Graphics drivers

VERSION 0004141500

The graphics drivers are independent of Photon; the driver that you
supply is implemented as one or more DLLs (your choice) that can be
used by Photon or by any other graphical system.

You provide a set of well-defined entry points, and the appropriate
graphics system will DLL-load your driver and call the entry points.

By way of example, this is how your driver interacts with Photon:

Photon | oI ~onnector Geometry
GUI engine \4
Y
—» Font engine »| Rasterizer [— Graphlcs
driver
A
Scans, images,
> and bitmaps

How a driver interacts with Photon.

As you can see from the above diagram, a set of Photon infrastructure
components are responsible for the interface to Photon:

Connector Presents the graphical region to Photon. This is the
area that's defined to be shown on the graphical
screen. The connector also contains the draw stream
interpreter, which interprets Photorsaw streams
and decodes the graphical commands. The
interpreter converts the draw stream from whatever
endian format it’s in to native-endian format.

Chapter 6 o Graphics Drivers 19

Writing your own driver

Geometry engine

Converts complex shapes (like circles) into
lower-level drawing primitives that the graphics
driver can handle.

Font engine Converts textual information into bitmaps.

Scans, images, and bitmaps
Deals with bitmap data.

Rasterizer Converts lower-level drawing primitives into a raster
format.
H/W DLL Your graphics driver, supplied as one or more DLLs.

Note that your graphics driver may wish to take over some of the
functionality from the various supplied components (e.g. your card
can draw lines using hardware acceleration). Generally speaking,
you'll only need to provide the functions that are unique to your card.

Writing your own driver

In this section, we’ll look at how you write a driver for your own card.
We’'ll look at the following topics:

e the “Big Picture”

e binding your driver to the graphics framework

e conventions used in function calls

20 Chapter 6 Graphics Drivers

Writing your own driver

The “Big Picture”

Prerequisites

Examples

Although the primary purpose of this document is to provide a means
of creating third-party Photon 2.0 drivers for Neutrino, the same
DLLs will also work with the Photon 1.1x drivers.

For developers that wish to maintain a Neutrino version as well as a
QNX 4 version, there’s special logic in tivakefile s provided that
will build a statically linked Photon 1.1x driver for QNX 4.

We provide a technote that's shipped with the toolkit that details how
to use themakefile s and various source files included so that you
can build various versions of the graphics drivers. This technote is
calledREADMEN is located in the root of the tree that you unpacked
that contains the source.

Before we look at the data structures and functions, it's important to
understand the “big picture” for the Photon 2.0 Graphics Driver
Development Kit (GDDK).

The purpose of the GDDK is to allow third parties to write
accelerated drivers without requiring QSSL to become involved in
doing the work.

In this chapter, we assume that you have a basic familiarity with
graphics cards, terminology, and concepts. We assume that you know
what a pixel is, what a span is, blitting, alpha, chroma and raster
operations (there are brief descriptions in the glossary appendix,
however). We also assume that you have sufficient hardware
documentation for your card in order to be able to program all the
registers. A working knowledge of the C language is essential.

Two examples are provided with the GDDK:

1 a generic flat frame buffer driver, and

2 an accelerated driver based on the 3DFX Voodoo Banshee card.

Chapter 6 o Graphics Drivers 21

Writing your own driver

We chose the Voodoo Banshee card as the basis for our example
because the register level programming docs are available to anyone
without needing an NDA.

The flat frame buffer example should be a good starting point for
nearly any modern card. You should start with this driver, and
implement accelerated versions for as many of the routines as
possible.

The flat frame buffer driver mostly just calls routines in the FFB
shared library. (The flat frame buffer driver is really quite small; it
consists mainly of library callouts.) You should check the flags in the
context argument to determine if your code can draw the specific type
of object being asked for (e.g. does it ask for alpha blending?). If your
code can perform the operation, then do it using the hardware,
otherwise, fall back to the flat frame buffer routines as shown in the
example source.

The modules The Photon 2.0 GDDK is a set of DLLs that have been chosen
because they expose groups of functionality in a modular fashion.

@ @ @ would this be a good place to mention the tier stuff, in an
introductory manner? Then later we could tie it in with the
functions...

The main feature of the Photon 2.0 driver architecture is the manner
in which functional groups of accelerated routines are provided and
accessed.

Future modules can be defined and accessed in the same way as we
have defined the access methods for the current sets of functions.

The groups of routines currently defined are:
Mode switching and enumeration
2-D Drawing

Offscreen memory manager

B W N

Video overlay control

22 Chapter 6 o Graphics Drivers

Writing your own driver

The driver

Examples of routines that will be defined in future revisions of this
GDDK are:

e 3-D drawing routines,

e TV tuner control routines,

e Video capture routines, and
e 2-D geometric primitives.

We've defined our GDDK using separate modules for each functional
group to make it easier to package a complete driver solution. For
example, most graphics cards are able to define a seperate “stride” for
the source and destination surfaces when used in the various drawing
routines, and for these cards, the offscreen memory management
routines become routines that manage simple, linear chunks of
memory. For these cards, the “standard” offscreen memory manager
library routines can be used, and no card specific code needs to be
written.

Another example of this is if the implementor wants to use the
standard VESA routines for mode switching and enumeration. In that
case, the standard VESA DLL could be used for that module.

On the other hand, if a vendor wishes to shrink the size of things
down (for, say, a device with a fixed-size LCD screen), they could
replace the generic VESA DLL that we supply with a very small, fast,
customized direct mode switching module they wrote themselves.

Also of interest is the fact that we've engineered the function names
such that you could provide all the modules in a single DLL, orin
multiple DLLs, depending on your modularity and size tradeoff
requirements.

With Photon 2.0, it's now possible (assuming the existence of the
DLL routines described in this GDDK) to write a single “driver” that
works for all cards. This driver is called —graphics under
Neutrino, and is responsible for:

Chapter 6 o Graphics Drivers 23

Writing your own driver

e connecting to the appropriate Photon server,

¢ locating the correct set of DLLs to use for a particular user on a
particular machine,

e and then loading those DLLs and using them to fulfill the
instructions encoded into the Photon draw stream.

Although the current implementation of this driver is limited to
driving one piece of hardware (i.e. one set of DLLS), it's our intention
to makeio —graphics eventually handle an arbitrary number of
graphics devices, and also an arbitrary number of Photon servers,
simultaneously.

The font engine and There are many operations defined in the Photon high-level API that
render library are extremely unlikely to be handled by any kind of graphics
hardware. Good examples of these are circles and fonts.

Even if a graphics cardouldhandle circles, it may draw them in a
card-dependent way that would cause problems for users who expect
consistent behaviour, so we need a way to handle them in a
completely consistent way.

Theio —graphics driver solves these problems by using the render
library and the font manager to turn high-level entities into
lower-level objects that all hardware can draw consistently.

The font manager is obviously used for rendering any sort of text
objects. It's currently designed to return “raster” style output which

the driver draws as bitmaps or images, but we plan to eventually use it
to return vector information that the driver could use directly.

The render library is used to “cook down” operations (other than
fonts) which are defined in the Photon API, but which make little
sense to implement in chipset-specific code. Circles are a good
example, but also things like “thick dashed lines” are done by the
render library.

The current implementation of the render library is designed to render
its output directly into the frame buffer, but future plans call for it to

24 Chapter 6 » Graphics Drivers

Writing your own driver

Mode switching and
enumeration

2-D drawing

be upgraded to return other kinds of data such as lists of vertices
representing a polygonal area to fill.

Some of the planned changes mentioned above will be implemented
using a “2-D geometry module” that will be added to this GDDK, but
the main thing to remember is that you should only have to worry
about implementing the routines described in this GDDK document.

Mode switching and enumeration is the process of discovering what
kind of video card you have, what its capabilities are, and putting the
video card into one of its supported modes.

In the past, “trapping” for a particular graphics card was a potentially
difficult and even dangerous operation. There wasamyway to
determine if a particular card was present.

The overwhelming majority of video cards today are PCI or AGP
devices, which makes the job of detecting video cards mucich
easier.

In a “standard” Photon 2.0 environment, there’s a list of PCI device
IDs that are matched up with a text description of the set of DLLs
required to drive that instance of a video card. This removes the need
to call specific code in the DLL simply to find out if a given card is
present and supported.

Enumeration of the video modes supported by a card roughly
corresponds to the VESA BIOS model. A list of numbers is returned
corresponding to the modes the card can do, and a function is called
for each of the mode numbers and returns information about that
mode.

Switching to a given mode is accomplished by calling a function with
one of the supported mode numbers.

2-D drawing routines are the functions that actually produce or
manipulate an image.

Operations that fall into this category include:

Chapter 6 o Graphics Drivers 25

Writing your own driver

26

Offscreen memory
manager

Video overlay control

hardware cursor routines,

filled rectangle routines,
e scanline operation routines, and

BLT routines.

BLT routines include operations that draw an image that'’s in system
RAM into the framebuffer and routines that move a rectangular
portion of the screen from one place to another.

There’s no provision in the current GDDK to use Bresenham line
hardware or polygon filling hardware. These operations will be
addressed by a 2-D geometry DLL to be defined later.

Offscreen memory management routines are the code that allows the
io —graphics driver to manage the process of using the accelerator
to draw into various graphics objects, whether the objects are on the
screen or not.

Offscreen memory is the most important new API feature in Photon
2.0, and is what allows applications to achieve much better
performance than was possible in Photon 1.xx

Most modern video cards have far more memory than is actually
needed for the display. Most of them also allow the graphics hardware
to draw into this unused memory, and then copy the offscreen object
onto the visible screen, and vice-versa.

The offscreen management module deals with managing this memory.
The routines in this module deal with allocating and deallocating such
objects.

Video overlay control routines manage the process of initializing and
using video overlay hardware to do things like show MPEG content.

A video overlay is a hardware feature that allows a rectangular area of
the visible screen to be replaced by a scaled version of a different
image. This process occurs without actually requiring the driver to

Chapter 6 e Graphics Drivers

Writing your own driver

Binding your
driver to the
graphics
framework

explicitly avoid drawing in the framebuffer “underneath” the overlaid
region.

Most of the routines in this module deal with letting applications
know what kind of features the particular hardware supports and then
setting the overlay up to cover a specific area of the screen and to
accept an input stream of a particular size.

The rest of the overlay routines deal with implementing a protocol so
that the application knows when a given frame has been dealt with
and when it can send new frames to be displayed.

You must include the filéisplay.h , which contains structures that
you'll use to bind your driver to the graphics framework.

Binding of the driver is performed by the graphics framework
DLL-loading your driver, and then finding your entry point(s). The
name of the entry point depends on which functional block(s) your
DLL is providing; a single DLL can provide more than one functional
block, hence the names are unique. The following table applies:

Functional block Name of function

Core functions devgget.corefuncs()
Context functions devgget contextfuncs()
Misc functions devggetmiscfuncs()
Modeswitcher devggetmodefuncs()

Memory manager / frame bufferdevggetmemfuncs()

Video overlay devggetvidfuncs()

Chapter 6 o Graphics Drivers 27

Writing your own driver

(] The three functiongjevgget miscfuncs()devgget corefuncs()and
devgget.contextfuncs() muste supplied in the same DLL — all
three of these functions constitute one “group.”

Note that all functions in the table have a similar structure: they each
get passed a pointer tadsp _adapter _t structure, a pointer to a

set of functions (the type of which depends on the function being
called), and a table size tabsize(plus other parameters as
appropriate).

Thedisp _adapter _t is the main “glue” that the graphics
framework uses to hold everything together. We'll see this shortly.

The function pointers structure is what your function is expected to
fill in with all the available functions — this is how the graphics
framework finds out about the functions supported by each functional
block module.

Finally, the table sizetébsiz¢ parameter indicates how many entries
the function pointers structure holds. This is so that your initialization
function doesn’t overwrite the area provided. Note that there’s a
macro indisplay.h (calledDISP.ADD_FUNC()) for stuffing

function pointers into the table; it automagically checksttiesize
parameter.

Conventions Before we look at the function descriptions, here are some
conventions that you should be aware of.

Colour @@ @pete : RGB/BGR whatever...

Coordinate system The coordinate (0, 0) is the top left of the displayed area. Coordinates
extend to the bottom right of the displayed area. For example, if your
graphics card has a resolution of 1280 (horizontal) by 1024 (vertical),
the coordinates would be (0, 0) for the top left through to (1279,
1023), for the bottom right.

28 Chapter 6 Graphics Drivers

Writing your own driver

Coordinate ordering

Coordinate inclusivity

Context

Your driver will only be passed sorted coordinates. This means that if,
for example, a “draw span” function gets called to draw a horizontal
line from (x1, y) to (x2, y), we guarantee thatl < x2; we will never
passx1> x2.

All coordinates given aranclusive meaning, for example, that a call
to draw a line from (5, 12) to (7, 12) shall produteeepixels (that

is, (5, 12), (6, 12), and (7, 12)) in the image, and not two. Therefore,
you'll want to be careful to avoid this common coding mistake:

/I WRONG!
for (x = x1; x < x2; x++) {

and instead use:

/I CORRECT!
for (x = x1; x <= x2; x++) {

Every function is passed thisp _draw _context _t pointer as its
first parameter. This gives the function access to the master context
block.

If your functions modify any of the context blocks during their
operation, theynustrestore them before they return. The graphics
framework will modify the context blocks at will, and will then call

the appropriatepdate*() function to inform you which parts of the
context data have been modified. Then, and only then, may one of
your functions be called upon to do something with the hardware. We
guarantee that we wiltlot modify the context block/hile your

function is running.

When a context function (i.e., a function that’s in the
disp _draw _contextfuncs _t group of callouts) is called, it's

Chapter 6 o Graphics Drivers 29

Writing your own driver

30

expected to perform the following processing (whenever it can’t do a
particular operation or handle a particular mode, it should revert to the
flat framebuffer version of the calls; this will perform the function in
software, which will be slower):

1 Look at theflag; can we do this operation?

2 Do we recognize the pattern format?

3 Can we handle this particulprxel format?

4 If a pattern is not involved, draw the plain version of the object.

5 If a pattern is involved, see if it's a transparent pattern or afill
pattern, and draw as appropriate.

@ @ @ddonchoe , looks like the rectangle case doesn’'t handle all the
cases (e.g., chroma, alpha, rop) — what else needs to be added here?
Do we ship the source for the FHBBRARYfor them to take a look

at, or will the FFBdriver be sufficient for a “see also” kind of thing?

As an optimization, your driver would perform these checks in its
update()function (e.g. thelisp _draw _contextfuncs _t’s
updaterop3() function) and set a flag to itself (in its private context
structure) that indicates whether or not it can do the appropriate
function. This saves each and every context function from having to
perform this work at runtime; it just checks the flag.

Patterns Patterns are stored as a monochr@xtarray. Since many of the
driver routines work with patterns, they're passed in 8-bit chunks (an
unsigned char), with each bit representing one pixel. The most
significant bit (MSB) represents the left-most pixel, through to the
least significant bit (LSB) representing the right-most pixel. If a bit is
on (“1") the pixel is considered “active,” whereas if the bit is of®{f
the pixel is considered “inactive.” The specific definitions of “active”
and “inactive,” however, depend on the context where the pattern is
used.

Chapter 6 e Graphics Drivers

Writing your own driver

As an example, the binary patterh000001(hex0xC1) indicates three
“active” pixels: the left-most, the second left-most, and the
right-most.

Note that functions that hawgx1in their function names deal with a
single byte of pattern data (one horizontal line) whereas functions that
havesxsin their function names deal with @by 8 array (eight
horizontal lines).

The pattern is a “circular” pattern, meaning that if additional bits are
required of the pattern past the end of the pattern definition (for that
line) the beginning of the pattern (for that line) is reused. For
example, if the pattern was110000and 15 bits of pattern were
required, then the first eight bits would come from the pattern (i.e.,
11110000 and then the next 7 bits would once again come from the
beginning of the pattern (i.e1111000 for a total pattern of
1111000011110005ee “Pattern rotation,” below for more details about
the initial offset into the pattern buffer. A similar discussion applies to
the vertical direction: If an 8 byte pattern is used and more pattern
definitions are required past the bottom of the pattern buffer, we start
again at the top.

Pattern rotation on a filled surface

In order to ensure a consistent “look” to anything that's drawn with a
pattern, we need to understand the relationships amongxtahdY
coordinates of the beginning of the object to be drawn, the origin of
the screen, and thgat xoff andpatyoff members of the

disp _draw _contextfuncs _t context structure.

Chapter 6 o Graphics Drivers 31

Writing your own driver

Top of
screen 0 1 2 3 4 5 6 7 8 9

0

N

© oo N O o »~ w N

‘ Areas 1 and 3

Areas 1 and 2

Three surfaces.

The diagram above shows three overlapping rectangles, representing
three separate regions (for example, thneem s); we’'ll focus our
discussion on the middle one. If an application drew three rectangles
within one Photon region, it would be up to tapplicationto draw

the three rectangles in the appropriate order — our discussion here
about clipping only applies to separate regions managed by Photon.

If only the middle rectangle was present (i.e., there were no other
rectangles obscuring it), your function to draw a rectangle with a
pattern (e.g.draw_rect pat8x8(), would be called once, with the
following arguments:

32 Chapter 6 e Graphics Drivers

Writing your own driver

Note that thexl, y1, x2 andy2 parameters are passed to the function
call itself, while thepat xoff andpat yoff parameters are part of a

data structure that the function has access to. We'll just be listing the
raw variables here instead of explicitly mentioning their locations.

The values fox1, y1, x2 andy?2 are reasonably self-explanatory; draw
a rectangle fromxl, y1) to (x2, y2). Thepatxoff andpatyoff values
are both zero. This indicates that you should begin drawing with the
very first bit of the very first byte of the pattern. If our pattern looked
like this:

0 1 2 3 4 5 6 7

0xCC
0xCC
0x33
0x33
OxAA
0x55
0xFO
0x0F

~N O o b~ W N -~ O

Typical pattern.

Then the rectangle drawn would look like this:

Chapter 6 e Graphics Drivers 33

Writing your own driver

Top of
screen 0 1. 2 3 4 5 6 7 8 9

© 00 N O O b W N -~ O

Pattern filling a surface.

If we supplied a value of anythingther thanzero for thepat xoff and
pat.yoff parameters, (specifically, if we made those variables a
function of the location of the rectangle) then the pattern would
appear to “creep” along with the change of the location.

Let's now turn our attention to the case where the other two rectangles
are partially obscuring our rectangle-of-interest.

When this needs to be drawn, the GUI may automatically transform
the single middle rectangle into a set of three rectangles,
corresponding to the area that's still visible (this is called “clipping”):

e (3,2)t0(4,3)
e (3,4)1t0 (6, 4)
e (5,5)1o (6, 6)

This therefore implies thatraw_rect pat8x8()will be called three
times:

34 Chapter 6 e Graphics Drivers

Writing your own driver

devg _get_corefuncs()

x1 yl x2 y2 patxoff patyoff

3 2 4 3 0 0
3 4 6 4 0 2
5 5 6 6 2 2

Notice how thepat xoff andpat.yoff pattern offset values are

different in each call (firstq, 0), then @, 2) and finally @, 2)) in order

to present the same “window” on the pattern regardless of where the
rectangle being drawn begins. This is called “pattern rotation.”

Pattern rotation on an image
To find the right bit in the pattern for a rectangle at poixtY):
X—index = (x + pat _xoff) % 8;

y_index = (y + pat _yoff) % 8;

The BLIT functions take a@xanddy parameter, so you should
substitute that in the equations above.

This function is used by the graphics framework to get your driver’s
core functions:
int
devg _get _corefuncs (disp _adapter _t * ctx
unsigned pixel_format,

disp _draw _corefuncs _t * fns
int tabsize;

The pixel_format parameter

The extra parameteapjxelformat, is defined below.

Chapter 6 e Graphics Drivers 35

Writing your own driver

Note that you'renot expected to be able to render into the formats
tagged with an asterisk (“*”) — these can only act as sources for
operations, not as destinations.

@ @ @ddonohoe can you recheck this list of non-renderable
formats? We've added and removed a bunch, so I'm not convinced
that this is up-to-date. Also, some of the names appear to be
inconsistentDISP.SURFACE FORMAT versusDISP.PACKED and
DISP_.PLANAR, is this correct?

Therefore, these formats wouldn’t be specified as parameters to
devgget corefuncs()

In any case, if you receive@ixelformatthat you don’'t know what to
do with (or don’t want to handle yourself), you should call the
flat-framebuffer helper functions (see below, under Graphics helper
utilities) to perform the operation.

Also, the websitevww.webartz.com/fourcc contains an extensive
list of FOURCC(for “Four Character Code”) pixel formats,
corresponding to the definitions used below, with excellent diagrams
and explanations.

DISP.SURFACEFORMAT_MONO (*)
pixel is 1 bit, and is monochrome.

DISP_-SURFACEFORMAT_PAL4 (*)

pixel is 4 bits, and is selected from a palette of 16 (4 bits)
colours.

DISP.SURFACEFORMAT_PALS8

pixel is 8 bits, and is selected from a palette of 256 (8 bits)
colours.

36 Chapter 6 e Graphics Drivers

Writing your own driver

DISP.SURFACEFORMAT_ARGB1555
pixel is 16 bits, and the colour components for red, green, and
blue are 5 bits each (the top kik80will be used for alpha
operations in the future).
DISP_.SURFACEFORMAT_RGB565
pixel is 16 bits, and the colour components for red and blue are
5 bits each, while green is 6 bits.
DISP.SURFACEFORMAT_RGB888

pixel is 24 bits, and the colour components for red, green, and
blue are 8 bits each.

DISP_.SURFACEFORMAT_ARGB8888

pixel is 32 bits, and the colour components for red, green, and

blue are 8 bits each, with the other 8 bits to be used for alpha

operations in the future.
DISP.SURFACEFORMAT_PACKEDYUV_IYU1

12 bit format used in mode 2 of the IEEE 1394 Digital Camera

1.04 specification. The formatis YUV (4:1:1) UYYVYY.
DISP_.SURFACEFORMAT_PACKEDYUV_IYU2

24 bit format used in mode 2 of the IEEE 1394 Digital Camera

1.04 specification. The format is YUV (4:4:4) UYVUYV.
DISP.SURFACEFORMAT_PACKEDYUV_UYVY

Effectively 16 bits per pixel, organized as UYVY, two pixels

packed per 32-bit quantity.
DISP.SURFACEFORMAT_PACKEDYUV_YUY2

Effectively 16 bits per pixel, organized as YUYV, two pixels

packed per 32-bit quantity.
DISP.SURFACEFORMAT_PACKEDYUV_YVYU

Effectively 16 bits per pixel, organized as YVYU, two pixels
packed per 32-bit quantity.

Chapter 6 o Graphics Drivers 37

Writing your own driver

DISP.SURFACEFORMAT_PACKEDYUV_Vv422
Same as YUY2, above.

DISP.SURFACEFORMAT_PACKEDYUV_CLJR

Cirrus Logic’s pixel format. Packs 4 pixel samples into a single
32-bit quantity by having the Y samples be 5 bits and the U and
V samples be 6 bits each. Organization is YYYYUV.

DISP.SURFACEFORMAT_YPLANE
@@ @Organization?@@ @

DISP.SURFACEFORMAT_UPLANE
@@ @Organization?@@ @

DISP_.SURFACEFORMAT_VPLANE
@ @ @Organization?@@ @

DISP_.PACKED_YUV _-FORMAT_IYU1
12 bits per pixel, layout is U2Y2Y2V2Y2Y2 (horizontal 1:4:4,
vertical 1:1:1)

DISP-.PACKED_YUV _-FORMAT_IYU2
24 bits per pixel, layout is U4Y4V4U4Y4V4 (horizontal 1:1:1,
vertical 1:1:1)

DISP-.PACKED_YUV _FORMAT_UYVY
16 bits per pixel, layout is U8Y8V8Y8 (horizontal 1:2:2,
vertical 1:1:1)

DISP-.PACKED_YUV _FORMAT_YUY?2
16 bits per pixel, layout is YBU8Y8VS8 (horizontal 1:2:2,
vertical 1:1:1)

DISP-.PACKED_YUV _FORMAT_YVYU

16 bits per pixel, layout is Y8V8Y8US8 (horizontal 1:2:2,
vertical 1:1:1)

38 Chapter 6 e Graphics Drivers

Writing your own driver

DISP_.PACKED_YUV _FORMAT_V422
16 bits per pixel, layout is V8Y8UB8Y8 (horizontal 1:2:2,
vertical 1:1:1)

DISP_.PACKED_YUV _FORMAT_CLJR
8 bits per pixel, layout is V6U6Y5Y5Y5Y5 (horizontal 1:3:3,
vertical 1:1:1)

DISP_.PLANAR_YUV _FORMAT_YVU9
9 bits per pixel, layout is YVU (horizontal 1:4:4, vertical 1:4:4)

DISP_.PLANAR_YUV _FORMAT_YV12
12 bits per pixel, layout is YUV (horizontal 1:2:2, vertical
1.2:2)

DISP_.PLANAR_YUV _FORMAT_I420
12 bits per pixel, layout is YVU (horizontal 1:2:2, vertical
1.2:2)

DISP_.PLANAR_YUV _FORMAT_CLPL

Same a®ISP.PLANAR_YUV _FORMAT_YV12 except that the U

and V planes do not have to contiguously follow the Y plane.

Also known as the “Cirrus Logic Planar format.”
DISP_.PLANAR_YUV _FORMAT_VBPL

Same a®ISP.PLANAR_YUV _FORMAT_YV12 except that the U
and V planes do not have to contiguously follow the Y plane.
Also known as the “VooDoo Banshee Planar format.”

DISP.SURFACEFORMAT_BYTES

Surface is a collection of bytes with no defined format (for
example, unallocated frame buffer memory).

DISP.SURFACEFORMAT_PAL

A flag that's OR’d in to the surface type to indicate it's a palette
based format.

Chapter 6 e Graphics Drivers 39

Writing your own driver

DISP.SURFACEFORMAT_YUV

A flag that’ OR'd in to the surface type to indicate a YUV
colour format.

The pointer to function table is defined as follows (the parameters are
listed in the function definitions section, below):

typedef struct disp —draw _corefuncs {
void (* wait_idle) (...);

void (* update_draw_surfacg (...);
void (* updatepattern (...);

void (* draw_span (...);

void (* draw_sparlist) (...);
void (* draw_solid_rect) (...);
void (* draw_line_pat8x) (...);
void (* draw_line_trans8x} (...);
void (* draw_rect_pat8x§ (...);
void (* draw_rect_trans8x§ (...);

void (* blit) (...);
void (* blit2) (...);
} disp _draw _corefuncs _t;

The core functions only need to obey the target info from the
disp _draw _context _t structure, unless otherwise noted.

void (* wait_idle) (disp _draw _context _t * contexj

This function will wait for the hardware to become idle, and will then
return. This implies that it's safe to directly access the frame buffer
after this function returns.

void (* updatedraw_surfacg (disp _draw _context _t
* contexj

The surface has changed, examine the members pointed to by the
surfacestructure pointer member of tloentext

40 Chapter 6 o Graphics Drivers

Writing your own driver

void (* update_pattern (disp —_draw _context _t * contexj

The pattern has changed, examinedbetextmembergat, patxoff,
patyoff, andpatternformat

void (* draw—sparn (disp _draw _context _t * context
disp —_color _t color, int x1, int X2, int)

Draw a plain, ordinary, opaque, horizontal line with the given colour
from (x1, y) to (X2, y). Doesnot make use of any pattern information
— the line is a single, solid colour.

void (* draw_span.list) (disp _draw _context _t * context
int count disp —color _t color, int * x1, int * x2, int
*

y)

Identical todraw_span()above, except a list of lines is passed, with
countindicating how many elements are present inxhe<2, andy
arrays.

void (* draw_solid_rect) (disp _draw _context _t * context
disp —color _t color, int x1, int vyl int X2 int y2)

Draw a plain, ordinary, opaque rectangle with the given colour (in
color), from (x1, y1) to (x2, y2). Doesnot make use of any pattern
information — the rectangle is a single, solid colour.

void (* draw_line_pat8x) (disp _draw _context _t * context
disp —color _t bgcolor, disp _color _t fgcolor, int x1, int
X2, int y, uint8 _t pattern

Uses the passqahtternas described in the “Patterns” section of
“Conventions,” above. An active bit is drawn with tfgeolor colour,
and an inactive bit is drawn with tHegcolorcolour.

Chapter 6 o Graphics Drivers 41

Writing your own driver

void (* draw_line_trans8x) (disp _draw _context _t * context
disp _color _t color, int x1, int x2, int vy, uint8 _t
pattern

Uses the passqmhtternas described in the “Patterns” section of
“Conventions,” above. An active bit is drawn with thelor colour,
and an inactive bit does not affect existing pixels.

void (* draw_rect_pat8xg (disp _draw _context _t * context
disp —_color _t fgcolor, disp _color _t bgcolor, int x1, int
yl, int x2 int y2)

Uses the context structure’s membpad, pat xoff, pat.yoff, (but not
patternformatas it's already defined implicity by virtue of this
function being called). The pattern is used as described in the
“Patterns” section of “Conventions,” above. An active bit is drawn
with thefgcolor colour, and an inactive bit is drawn with thecolor
colour. See the section “Patterns,” above, for more information about
patterns.

void (* draw_rect_trans8x§ (disp _draw _context _t * context
disp _color _t color, int x1, int vyl int x2 int y2)

Uses the context structure’s membpes, pat xoff, pat.yoff, (but not
patternformatas it's already defined implicity by virtue of this
function being called). The pattern is used as described in the
“Patterns” section of “Conventions,” above. An active bit is drawn
with thecolor colour, and an inactive bit does not affect existing
pixels. See the section “Patterns,” above, for more information about
patterns.

void (* blitl) (disp _draw _context _t * context int sx
int sy int dx int dy, int width, int heigh)

Blits within the surface defined by the context structuselgface
member (i.e., the source and destination are within the same surface).
The contents of the area defined by the coordinatesy) for width

42 Chapter 6 e Graphics Drivers

Writing your own driver

devg _get_contextfuncs()

width and heighheightare transferred to the same-sized area defined
by the coordinatesd, dy).

void (* blit2) (disp _draw _context _t * context
disp _surface _t * src, disp _surface _t * dst int sx int
sy, int dx int dy, int width, int heigh)

Blits from the source surface specified g to the destination

surface specified bgst The contents of the area defined by the
coordinatesgx, sy) for width widthand heighteightare transferred

to the same-sized area defined by the coordindtesly). Note that
thesrc anddstsurfaces can be the same or different, whereas in

blit1() (above), the operation takes place onsheesurface (as

implied by the lack of a destination surface parameter). Therefore, the
driver should check the surface flags to see whersrhanddst

images are (either in system memory or video memory) before
performing the operation.

This function is used by the graphics framework to get your driver's
context functions:

int

devg _get _contextfuncs (disp _adapter _t * ctx,
disp _draw _contextfuncs _t * fns
int tabsize;

The pointer to function table is defined as follows (the parameters are
listed in the function definitions section, below):

typedef struct disp —draw _contextfuncs {
void (* draw_span (...);
void (* draw—_spanlist) (...);
void (* draw_rect) (...);

void (* blit) (...);

void (* updategenera) (...);
void (* updatefg_color) (...);
void (* update-bg-—color) (...);
void (* updateropd) (...);
void (* updatechromg (...);
void (* updatealpha (...);

} disp _draw _contextfuncs _t;

Chapter 6 o Graphics Drivers 43

Writing your own driver

All functions in the context drawing structure must obey the members
of thedisp _draw _context _t structure (e.g., the current

foreground colour); check tHtagsto see which members of the

context structure need to be obeyed. Note also that the core functions
updatepattern()andupdatedraw_surface()affect the operation of

these (the context) functions.

@@ @ remind them of thepdate*() funcs; here or in each
applicable description?

void (* draw_spar (disp _draw _context _t * context int
x1, int X2 int vy

Called to draw a single, horizontal line froml(y) to (x2, y).

void (* draw_span.list) (disp _draw _context _t * context
int count int * x1, int * x2 int *)

Called to drancountnumber of horizontal lines as given by the arrays
x1, X2, andy.

void (* draw_rect) (disp _draw _context _t * context int
x1, int yl int X2 int y2

Called to draw a rectangle from, y1) to (X2, y2).

void (* blit) (disp _draw _context _t * context
disp _surface _t * src, disp _surface _t * dst int sx int
sy, int dx int dy, int width, int heigh)

Called to perform a blit. The pixels from the source surfare) (
specified by the rectangle beginning s, 6Y) for the specified size
(lengthandheighd should be moved to the destination surface
beginning with the rectangle adX, dy) for the same size.

44 Chapter 6 o Graphics Drivers

Writing your own driver

devg _get_miscfuncs()

void (* updategenera) (disp _draw _context _t * contex}

Re-read all members of the context; potentially, all of them could
have changed.

void (* updatefg_color) (disp _draw _context _t * contexj}

Re-read only the foreground colour of the context. Thigisolor.

void (* update_bg_color) (disp _draw _context _t * contexj

Re-read only the background colour of the context. Thimjisolor.

void (* updaterop3) (disp _draw _context _t * contex}

Re-read only the raster operation-related members of the context.
Checkflagsto see if ROP3 functions are enabled or disabled. If
enabled, look atop3.

void (* updatecchromg (disp _draw _context _t * contexj

Re-read only the chroma-related members of the context. Glaask
to see if chroma functions are enabled or disabled. If enabled, look at
chromamodeandchromacolorO.

void (* updatealpha) (disp _draw _context _t * contexj

Re-read only the alpha-related members of the context. Clraggdto

see if the alpha functions are enabled or disabled. If enabled, look at
alphamode s_alpha d_alpha alphamapwidth, alphamapheight
alpha.mapxoff, alphamapyoff, andalphamap

This function is used by the graphics framework to get your driver's
miscellaneous functions:

int

Chapter 6 o Graphics Drivers 45

Writing your own driver

devg _get _miscfuncs (disp _adapter _t * ctx
disp _draw _miscfuncs _t * fns
int tabsiz¢;

The pointer to function table is defined as follows (the parameters are
listed in the function definitions section, below):

typedef struct disp —draw _miscfuncs {
int (* init) (...);
void (* fini) (...);

void (* setpalettd (...);

int (* sethw_curson (...);

void (* enablechw_cursor) (...);

void (* disable_hw_cursor) (...);

void (* sethw_cursor_pog (...);
} disp _draw _miscfuncs _t;

Note that if the driver does not support hardware cursors then it
should setll of the hardware cursor entry pointsN@LL. If any one
of the hardware cursor entry points is ndbHL thenall hardware
cursor entry points must be supplied.

int (* init) (disp _adapter _t * adapte)

Initialize the drawing hardware, allocate resources; whatever. Refer to
the call chart below (in the description for thisp _adapter _t’s

init() callout) for more information on where this initialization

function “fits” into the general flow.

void (* fini) (disp _adapter _t * adapte)

Un-initialize yourself by freeing resources, etc. See the call chart
below (in the description for theisp _adapter _t s init() callout)

for more information on where this uninitialization function “fits” into
the general flow.

46 Chapter 6 o Graphics Drivers

Writing your own driver

void (* setpalettd (disp _draw _context _t * ctx, int index
int count disp _color _t * pal)

This function is called to set the palette. Note, however, that if the
modeswitcher version of this functiodigp _modefuncs ->
set_palettd is present, it will be called instead (i.e., the modeswitcher
function overrides this function).

int (* sethw_cursor) (disp _adapter _t * ctx, uint8 _t
*bmpQ uint8 _t * bmpl unsigned colorQ, unsigned colorl,
int hotspotx, int hotspoLy, int sizex, int sizewy, int
bmp_stride)

Set the attributes of the hardware cursor. Note that the term “hotspot”
represents the “active” point of the cursor (e.g., the tip of the arrow in
case of an arrow cursor, or the center of the crosshairs in case of a
crosshair cursor, etc.).

If the cursor cannot be displayed properly, this function should return
a-1, which will cause the framework to show a software cursor
instead. For example, #izexor sizeyis too big, this function should
return-1.

The cursor image itself is defined by two bitmaps. The two colours,
colorOandcolorl apply respectively to the two bitmapspOand
bmp1l Both bitmaps have the same wid8izex), height 6izey), and
stride pmpstride) values.

For a given pixel within the cursor imagepan both bitmap locations
means this pixel is transparent.1An bmpOmeans draw the
corresponding pixel using the colour givendmlor0. A 1in bmpl
means draw the corresponding pixel using the colour giverolyrl.

If there’s al in bothbitmaps, thercolorlis to be used.

void (* enablehw_cursor) (disp _adapter _t * ctx)

Make the cursor visible.

Chapter 6 o Graphics Drivers 47

Writing your own driver

devg _get_modefuncs()

void (* disable_hw_cursor) (disp _adapter _t * ctX)

Make the cursor invisible.

void (* sethw_cursor_pog (disp _adapter _t * ctx, int X,
int y)

Position the cursor such that the hotspot is locates,) {n screen
coordinates.

This function is used by the graphics framework to get your driver’s
modeswitcher functions:

int

devg _get _modefuncs (disp _adapter _t * ctx,

disp _modefuncs _t * fns
int tabsiz¢;

The pointer to function table is defined as follows (the parameters are
listed in the function definitions section, below):

typedef struct disp —modefuncs {
int (* init) (...);
void (* fini) (...);
int (* getmodeinfy (...);
void (* getmodelisy (...);
int (* setmodg (...);

int (* disablevgd (...);
void (* reenablevgd (...);

void (* setdpms.modg (...);
void (* setdisplay-offse) (...);
void (* setpalettd (...);

void (* getcurrentcrtc_settings (...);
} disp _modefuncs _t;

48 Chapter 6 e Graphics Drivers

Writing your own driver

int (* init) (disp _adapter _t * ctX)

Initialize your hardware. The return value from this functiorlio
indicate an error, or a natural number to indicate the number of
displays that this mode switcher controls. As an example, a display
card could control both a flat-panel and a monitor simultaneously; in
this case the return value would he

The following call chart applies:

modeswitch —> init ();
modeswitch —> setmode ();
mem —> init ();
misc —> init ();

/I graphics functions get called here

/I user requests a new mode; shut everything down
misc —> fini ();
mem —> fini ();
/I at this point no more graphics functions will be called

modeswitch —> setmode ();
mem —> init ();
misc —> init ();

/I graphics functions get called here
/I shutdown of graphics drivers requested here
misc —> fini ();
mem —> fini ();

/I at this point no more graphics functions will be called
modeswitch —> fini ();

void (* fini) (disp _—adapter _t * ctx)

Return your hardware to the uninitialized state; deallocate resources,
etc.

Chapter 6 o Graphics Drivers 49

Writing your own driver

int (* getmodeinf) (disp _adapter _t * ctx, int dispnq
unsigned mode disp _mode_info _t * info)

Populate thenfo structure with information pertaining to the mode
specified irmodefor the display number referenced bigpna See
the note about modes get modelist()below for more information.

void (* getmodelisy (disp _adapter _t * ctx, int dispnq
unsigned * list, int index int siz

Returns a maximum afizemodes into the arralyst, starting at the
indexindex for the display number referenced tgpna Theindex
parameter is in place to allow multiple calls to et modelist()
function in case there are more modes than will fit intolistearray

on any given call. The list of modes is terminated with the constant
DISP_.MODE_LISTEND (therefore you should not return this as a valid
mode!). The list of modes must be returned in the exact same order
each time, but there is no requirement to “order” the list by any
sorting criteria.

If you AND a mode number with the constabitSP_.MODE_GENERIC

you can tell whether the mode supports generic timings. This means
that you must be careful about the mode numbers that you select, so
that they correctly have theISP.MODE_GENERICDit set or unset as
appropriate. See below setmode()for more information.

Note that it's themode numbe¢the contentof thelist array) that’'s
important for subsequent calls, andtthe mode index itself. For
example, if your driver returned the following array:

list [0] = 0x1234;
list [1] = 0x070B;
list [2] = 0x8086;
list [3] = DISP —_MODELISTEND; // terminate list

Then yourgetmodeinfo(andsetmode()functions would be called
with, for examplepx8086andnotthe index2.

50 Chapter 6 e Graphics Drivers

Writing your own driver

int (* setmodg (disp _adapter _t * ctx, int dispng
unsigned mode disp _crtc _settings _t * settings
disp _surface _t * surf, unsigned flag9

Set the hardware for the display referenceditspnoto the mode
specified bymode See the note about modesget modelist()above
for more information.

Thesettinggparameter is valionly if the mode number ANDed with
DISP.MODE_GENERICis non-zero, implying that you can pass an
arbitrary X and Y resolution and refresh rate.

int (* disablevgad (disp _adapter _t * ctX)

Disables the VGA registers, if possible. If not possible (i.e., the VGA
card is on an ISA bus), the function returisand set®rrnoto

ENOSYS If the VGA registers can be disabled, this function returns
the previous state of the VGA registersi(t indicate “enabled,” or a
0to indicate “disabled”) so that the state can be restored by
reenablevga(), below.

void (* reenablevga) (disp _—adapter _t * ctX)

Enables the VGA registers. This function will not be called unless
disablevga() previously returned ato indicate that the VGA had
been enabled.

void (* setdpmsmod§ (disp _adapter _t * ctx, int dispnq
int mode

Select a DPMS mode for the display referencedlispnoas follows:

Mode Meaning
0 On
continued. ..

Chapter 6 o Graphics Drivers 51

Writing your own driver

Mode Meaning
1 Standby
2 Suspend

4 (notatypo) Off

void (* setdisplay_offse) (disp _adapter _t * ctx, int
dispnq unsigned offse)

Moves the video memory base for the display referencediggyno
Note that theoffsetmember must be a multiple of theetc_start gran
member of thelisp _mode_info _t structure.

void (* setpalettd (disp _adapter _t * ctx, int dispnq int
index int count disp _color _t * pal)

Called to set the palette for the display referencedibpna One or
more entries in the palette can be set at a time with this function call.
Theindexindicates the starting palette index, asalintindicates the
number of entries being set. Finalpal contains an array of colour
values, one per entry, to set.

Note that if this function is specifed (i.e., NQULL in the function
pointersetpalettd, then it will be called regardless of whether or not
thesetpalette()function in the miscellaneous callouts structure has
been supplied:

if (disp _modefuncs -> set _palette) {

(*disp _modefuncs -—> set _palette) (...);
} else if (disp _draw _miscfuncs —> set _palette) {
(*disp _draw _miscfuncs —> set _palette (...);

}

52 Chapter 6 e Graphics Drivers

Writing your own driver

devg _get _vidfuncs()

void (* getcurrent_crtc_setting$ (disp
dispnq disp _crtc _settings

—_adapter _t * ctx, int
-t * setting$

Fills the settingsstructure based on the current state of the display
controller specified bdispna

This function is used by the graphics framework to get the video
overlay functions:

int

devg _get _vidfuncs (disp _adapter _t * ctx,
disp —vidfuncs _t * funcs
int tabsiz¢;

The pointer to function table is defined as follows (the parameters are
listed in the function definitions section, below):

typedef struct disp
int (* init) (...);
void (* fini) (...);
void (* moduleiinfo) (...);
int (* getchannelLcapy (...);
int (* setchannelpropg (...);
int (* nextframg (...);
int (* closecchanne) (...);

} disp -_vidfuncs _t;

—vidfuncs {

@@ @ Need a general, high-level overview/description kind of thing
to put this into context...

General capabilities of a video scaler, for a given format:

typedef struct {
unsigned short size

unsigned short reservedf

unsigned flags

unsigned format,

int src_maxx;

int src_max.y;

int max_mag-factor_x;
int max-mag-factor_y;
int maxcshrink_factor_x;
int max_shrink_factor_y;
unsigned reserved [8];

} disp _vid _channel _caps _t;

Chapter 6 e Graphics Drivers 53

Writing your own driver

size Size of this struct.

reservedQreserved
Reserved, do not examine or modify.

flags Flags beginning with the stringISP.VID _CAP, see below.

format The pixel format, see “ThpixelLformatparameter,”
above.

Src_maxx, srccmaxy

Maximum width and height of source frames.

maxmag factorx, maxmagfactor.y
Magnification — a1 means cannot scale upwards.

maxshrink factor_x, maxshrink factor_y
1 means cannot scale downwards.

The followingflagsmember bits are defined:

DISP.VID _CAP_.SRCCHROMA KEY
Video viewport supports chroma-keying on frame data.

DISP.VID _CAP_.DST.CHROMA KEY
Video viewport supports chroma-keying on desktop data.

DISP.VID _CAP.BUSMASTER
Scaler device can bus-master the data from system ram.

DISP.VID _CAP.DOUBLE_BUFFER
Scaler channel can be double-buffered.

DISP.VID _CAP_DRIVER_CAN_COPY
The driver can perform the transfer of frame data.

54 Chapter 6 o Graphics Drivers

Writing your own driver

DISP.VID _CAP_APP.CAN_COPY
The app can transfer the frame data.

DISP.VID _CAP_BRIGHTNESSADJUST
Brightness of video viewport can be adjusted.

DISP.VID _CAP_.CONTRAST.ADJUST
Contrast of video viewport can be adjusted.

Configurable properties of a video scaler channel:

typedef struct {

unsigned short size

unsigned short reservedf

unsigned flags

unsigned format

disp —color _t chroma_keyQ
unsigned reservedl

unsigned chroma_flags

disp —_color _t chroma_key_mask
disp —color _t chroma_mode

int X1, vyi,

int X2, Y2

int src_width, src_height
unsigned fmt_index

short brightness

short contrast

disp —vid _alpha _t alpha [DISP _VID _MAXALPHA];
unsigned reserved [8];

} disp _vid _channel _props _t;

And the fields are as follows:

size Size of this structure.

reservedQreservedlreserved
Reserved, do not examine or modify.

flags See below for details.

format Format of the frame data.

Chapter 6 e Graphics Drivers

55

Writing your own driver

chromakey0 Chroma-key colour.
chromaflags Chroma-key comparison operation.

chromakeymask

Colours are masked with this before chroma
comparison.

chromamode Type of chroma key match to perform, see below

for details.

x1,yl Top left corner of video viewport in display
coords.

X2, y2 Bottom right corner of video viewport in display
coords.

src_width, src_height
Dimensions of the video source data.

fmtindex Selects the format of the source frame data.

brightness Brightness adjusbx7fff = normal,0 darkestOxfff
brightest.

contrast Contrast adjustox7fff = normal,0 minimum, Oxffff
maximum.

alpha Array of regions of the video viewport to be

blended with desktop.

Theflagsmember can be selected from the following:

DISP.VID _FLAG_ENABLE
Enable the video viewport.

DISP.VID _FLAG_.CHROMA_ENABLE
Perform chroma-keying.

56 Chapter 6 e Graphics Drivers

Writing your own driver

DISP.VID _FLAG_DOUBLE_BUFFER
Perform double-buffering.

DISP.VID _FLAG_DRIVER_DOES COPY

Driver performs the copy of frame data in thextframe()
routine.

DISP.VID _-FLAG_APP.DOES COPY

Driver copies the frame data after calling thextframe()
routine.

Thechromamodemember can be selected from the following:

DISP.VID _CHROMA_FLAG_DST
Perform chroma test on desktop data.

DISP.VID _CHROMA_FLAG_SRC
Perform chroma test on video frame data.

And now, the entry points:

int (* init) (disp _adapter _t * adapter char * optstring

Returns the number of scalers available (functions similarly to the
way the modeswitcherimit() function returns the number of display
controllers available).

void (* fini) (disp _adapter _t * adapte)

Frees resources, disables all scalers (makes them invisible). Must free
any offscreen memory that was reserved for frame data.

Chapter 6 o Graphics Drivers 57

Writing your own driver

void (* moduleiinfo) (disp _adapter _t * adapter
disp —_module _info _t * info)

Fills thedisp —_module _info _t structure (see below for contents).

int (* getchannelLcapy (disp _adapter _t * adapter int
channe] int fmtiindex disp _vid _channel _caps _t * cap9

Get the scaler capabilities for a given pixel format. We start with a
fmtindexof 0, and keep calling witlimt.indexbeing incremented,
until the function returnsl. Thus, you can retrieve info on each
format supported by the scaler denotedchgnnel Channels are
0-based, i.e. ifnit() said there wera channels, then the valid channel
numbers aré to 2, inclusive.

int (* setchannelpropy (disp _adapter _t * adapter int
channe] disp _vid _channel _props _t * props

disp _surface _t * yplanel disp _surface _t * yplane2

disp _surface _t * uplanel disp _surface _t * uplane2

disp _surface _t * vplanel disp _surface _t * vplanel

Configure a scaler channel. Unless we set the

DISP.VID _[FLAG_APP.DOES COPYflags, thetplane* parameters

should be ignored. Otherwise, each plane parameter points to a
surface descriptor. Only thetrideandpaddrmembers are defined.
Thepaddrmembers are the physical address of the video frame data
buffers. Unless we set th®SP.VID _FLAG_DOUBLE_BUFFERflag,
the*plane2parameters should be ignored. Unless the frame data
format is planar (more than one surface needed) theunglae*and
vplane*parameters should be ignored by the driver.

int (* nextframe(disp _adapter _t * adapter int channe)
disp _surface _t * yplane disp _surface _t * uplane
disp _surface _t * vplang

If the driver is doing the copying, therextframe()is called when a
new frame is ready to copy. Thplane* pointers point to the surface
data for the frame. If the data format is non-planar, then only the

58 Chapter 6 e Graphics Drivers

Writing your own driver

The
disp —_module _info _t
structure

yplanepointer is valid. (Note that the scaler may also support RGB or
other non-YUV formats, in which casglanepoints to the data). If

the application is doing the copying, then the driver should ignore all
plane pointers. In that caseextframe()is calledbeforethe driver

starts copying the next frame’s data. This function will return the
frame index @ or 1) if double buffering, to specify whether the data
should be copied to thlanelsurface set, or thgplane2surface set
that was returned bgetchannelprops() above. In all other cases,

this function should retura.

For valid surface descriptors, only tegideandvidptr members are
defined.

int (* close_channe) (disp _adapter _t * adapter int
channe)

Disable the scaler specified bfzannel You should free up any
offscreen memory that you may have allocated for the frame data on
this channel.

Here’s the definition of thdisp _module _info _t data type:

typedef struct disp —module _info {
unsigned short rev_major,
unsigned short rev_minor;
char * description

} disp _module _info _t;

Therev_major andrev_.minor members indicate the major and minor
revision numbers, and the stridgscriptioncontains an ASCI|
description of the module. Here’s an example:

disp —module _info _t info;
info.rev. _major = 1;

info.rev. _minor = 123;
info.description = "3dfx VooDoo Banshee / VooDoo3"

This is for a module calleti3dfx VooDoo Banshee / VooDod3with
a version of1.123

Chapter 6 e Graphics Drivers 59

Writing your own driver

The big picture Refer to the following include files for the details as we discuss the
structures:

e draw.h
e mode.h
e vmem.h

e display.h

The master element is thisp _adapter _t structure, which is used
as the “glue” that contains the individual pieces of the driver:

disp _adapter _t The following is thedisp _adapter _t structure:

@ @ @ddonohoe , you left a comment abouti must add some
pointers to function tables herganything | should worry about? :-)

typedef struct disp —adapter {
int size
void * gd_ctx
void * ms.ctx
void * mmectx
void * vo_ctx
unsigned reserved [8];
int irq;
uintptr _t rombase
uintptr _t base [6];
unsigned long reservedl[2];
int pci—handle
void * pci_dev_handle
unsigned short pci—vendot.id;
unsigned short pci—device.id;
short pci—index
unsigned caps
FILE * dbgfile
int min_pixel_clock
int max_pixel—_clock
unsigned intr _sources
char * sysram.workspace
int * sysramworkspacesize
unsigned reserved2[4];

} disp _adapter _t;

60 Chapter 6 o Graphics Drivers

Writing your own driver

Each driver component has its own context block — these are
identified in the structure as ending_etx. This area is for the use of

the driver component; we don't define these areas. This can be
particularly useful if, for example, you wish to supply multiple
components, with the components calling functions within each other.
Since thalisp _adapter _t is available to each component, by
placing function pointers within the context blocks this allows
immediate access to the functions from different components.

The members odisp _adapter _t are defined as follows:

size Size of this structure.

gd_ctx Context block for graphics (“drawing”) drivers.

mS Ctx Context block for the modeswitch function group.

mmL.ctx Context block for the memory manager function
group.

VO_CtX Context block for the video overlay function
group.

reserveqreservedlandreserved?
Reserved, do not examine or modify.

irq Interrupt vector used by graphics card (if card
doesn’t generate interrupts, contains the valjie

rombase Physical address of video ROM BIOS, if present,
elseNULL.

base Array of up to six physical (PCI) base addresses.

pci_handle Used internally by the display utilities; do not
modify.

pci.devhandle Used internally by the display utilities; do not
modify.

Chapter 6 o Graphics Drivers 61

Writing your own driver

pci_vendorid
pci_deviceid

pci_index

caps

dbgfile

intr_sources

Contains the PCI Vendor ldentification number.
Contains the PCI Device ldentification number.

Contains the PCI Index. Together, the three fields
pci_vendorid, pci_deviceid, andpci.index
uniquely identify a hardware device in the system.

Capabilities; a bitmap of the following values:
DISP.CAP_MULTI _MONITOR_SAFE (indicating

card can work with other VGA cards in the same
system)DISP.CAP_2D_ACCEL (indicating 2-D
driver acceleration), andISP.CAP_3D_ACCEL
(indicating 3-D driver acceleration). The
modeswitcher ORs in the multi-monitor safe flag,
if appropriate, and the other components would
OR in their own capability flags if supported.

A FILE * (orNULL) file pointer where debugging
information gets written to. You'd use
disp_perror() anddisp_printf() within your driver,
and those functions would take care of getting the
debugging information into the file (if ndtULL).
Note that this will slow down your driver, so it’s
best if it's only used in extreme (or low-running)
cases.

Indicates what can cause an interrupt, bit-wise OR
of the following: DISP.INTR_.SOURCEVSYNC
(vertical sync) DISPINTR_SOURCE2D_IDLE

(2-D drawing engine idle),
DISPINTR_SOURCE3D.IDLE (3-D drawing

engine idle), and
DISPINTR_SOURCECAPTUREDFRAME (a video
frame has been captured).

sysramworkspace

62 Chapter 6 o Graphics Drivers

For use by the flat frame buffer or driver as a
scratch area in system RAM.

Writing your own driver

sysramworkspacesize

The following is thedisp _draw _context

disp _draw _context _t
typedef struct disp
int

disp _adapter _t

void
struct disp
unsigned
disp —_color _t
disp —_color _t
uint8 _t
unsigned
unsigned
unsigned
unsigned short
unsigned short
disp —_color _t
disp —_color _t
disp —_color _t
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned char
disp _surface
unsigned

short
short
short

} disp _draw _context

—draw _corefuncs *

Size of the scratch area sgysramworkspace

—t structure:

—draw _context {
size

* adapter,

* gd_ctx

cfuncs
flags
fgcolor;
bgcolor,

* pat
pat_xoff;
pat_yoff;
pattern_format
rop3;
chroma_mode
chroma_color0;
chroma_colorl;
chroma_mask
alpha_mode
s_alphg
d_alpha
alpha_map_width;
alpha_map_height
alpha_map_xoff;
alpha_map_yoff;

* alpha_map

-t * surface

reserved [4];
-t

The members are defined as follows:

size

adapter

gd._ctx

cfuncs

Size of the structure.

Pointer back to thdisp _adapter _t discussed
above.

Graphics driver’s context.

A pointer to the core functions for rendering into
the currently targetted draw surface. This surface

Chapter 6 e Graphics Drivers 63

Writing your own driver

64

flags

fgcolor
bgcolor

imagepalette

is of the type specified by theurfacestructure’s
pixel formatmember.

Selected from one or more of the following
(bitmap):DISP.DRAW _FLAG_SIMPLE_ROP,
DISP.DRAW _FLAG_COMPLEXROP,
DISP.DRAW_FLAG_USE.ALPHA,

DISP.DRAW _FLAG_USE CHROMA,
DISP.DRAW_FLAG_MONO_PATTERN,
DISP.DRAW_FLAG_TRANS PATTERN These flags
are used to indicate what kind of operations should
be performed in all subsequent “context draw”
functions.

The foreground colour that's to be used.
The background colour that’s to be used.

List of colours used to translate a palette index into
a true colour.

imagepalettesize

pat

Number of entries inmage palette(above).

Pattern buffer; see description in “Patterns”
(above, in the “Conventions” section), as well as
the context functiondraw_rect pat8x8() and
draw_rect trans8x8()

patxoff andpat.yoff

patternformat

rop3

Chapter 6 e Graphics Drivers

Used to specify an offset for the pattern to cause it
to be shifted. See the section on “Patterns,” above,
for more information about patterns.

One of DISP_.PATTERN.FORMAT_MONO_8x1 or
DISP_.PATTERN.FORMAT_MONO_8x8 (from
draw.h).

Bitmapped raster operations, range betw@and
255inclusive. See thememcpy_x.c file in the flat

Writing your own driver

chromamode

chromacolorO

framebuffer library source for a sample
implementation.

Selected from the following, see below, in
“Chroma mode bits”: either
DISP.CHROMA_OP_SRCMATCH or
DISP.CHROMA_OP.DST_MATCH, and/or either
DISP.CHROMA_OP_.DRAW or
DISP.CHROMA_OP_NO_DRAW. (i.e.,SRCandDST
are mutually exclusive, as ablRAW and
NO_DRAW.)

Chroma key; indicates the colour to test on.

chromacolorl, chromamask

alphamode

s alpha

d_alpha

Reserved; do not examine or modify.

Bitmask indicating alpha blending operations, see
below, in “Alpha mode bits.” For unrecognized
alpha operations, call the supplied flat frame buffer
functions.

Source alpha blending factor.

Destination alpha blending factor.

alpha.mapwidth, alpha.map height

Width and height of the alpha map (below) in
pixels.

alpha.mapxoff, alphamapyoff

alphamap

X and Y offset of the alpha map (below). See the
discussion above in “Patterns” for more
information.

The alpha mapping grid, whose size is determined
by alpha.mapwidth andalpha. mapheight

(above). Each element of the map is one byte,
corresponding to one pixel. NULL, means that

Chapter 6 e Graphics Drivers 65

Writing your own driver

there’s no alpha map. The stride here is equal to
the width, i.e., one byte per element.

surface A pointer to adisp _surface _t structure that
contains the definition of the currently targetted
draw surface.

reserved Reserved, do not examine or modify.

When using an alpha map, blending factors come from the
alphamap and not from thes_alphaor d_alphamembers.

Chroma mode bits

The following bits apply to the chroma mode flagpde which
performs a per-pixel test:

DISP.CHROMA_OP_.SRCMATCH
Perform match on source image.

DISP.CHROMA_OP.DST_MATCH
Perform match on destination image.

DISP.CHROMA_OP_.DRAW
If match, draw.

DISP.CHROMA_OP.NO_DRAW
If match, don’t draw.

Note thatDISP.CHROMA_OP_SRC MATCH and
DISP.CHROMA_OP.DST_MATCH are mutually exclusive, as are
DISP.CHROMA_OP.DRAW andDISP.CHROMA_OP_NO_DRAW.

66 Chapter 6 o Graphics Drivers

Writing your own driver

Alpha mode bits

@@ @ General bitgiflonohoe sez askirempel):

DISP.-ALPHA_OP.BLEND
This is an alpha blending operation

DISP.ALPHA _OP.DST GLOBAL
Use the alpha in thd_alphamember (Ad=dalpha)

DISP.ALPHA_OP.SRC GLOBAL
Use the alpha in the alphamember (As=salpha)

DISP.ALPHA_OP.SRCPACKED

src(x) is image source (stored as alpha component of the image
data).

DISP.-ALPHA_OP_.SRCMAP
src(x) is alpha map.

Alpha mode blending (source) bits

@@ @ Alpha blending source factaidpnohoe sez asldrempel):

DISP.BLEND_SRCZERO
(0,0,0,0)

DISP.BLEND_SRCONE
(1,1,1,2)

DISP.BLEND_SRCDST.COLOR
(Ad,Rd,Gd,Bd)

DISP.BLEND_SRCONE_MINUS_DST
(1,1,1,1)-(Ad,Rd,Gd,Bd)

Chapter 6 o Graphics Drivers 67

Writing your own driver

DISP.BLEND_SRCSRCALPHA
(As,As,As,As)

DISP.BLEND_SRC ONE_MINUS_SRCALPHA
(1,1,1,1)-(As,As,As,As)

DISP.BLEND_SRCDST.ALPHA
(Ad,Ad,Ad,Ad)

DISP.BLEND_SRC ONE_MINUS_DST_ALPHA
(1,1,1,1)-(Ad,Ad,Ad,Ad)

Alpha mode blending (destination) bits

@@ @ Alpha blending destination factaitibnohoe sez ask
drempel):

DISP.BLEND_DST_ZERO
(0,0,0,0)

DISP.BLEND_DST_-ONE
(1,1,1,1)

DISP.BLEND_DST_SRCCOLOR
(As,Rs,Gs,Bs)

DISP.BLEND_DST_-ONE_.MINUS_SRC
(1,1,1,1)-(As,Rs,Gs,Bs)

DISP.BLEND_DST_.SRCALPHA
(As,As,As,As)

DISP.BLEND_DST.ONE_ MINUS_SRCALPHA
(1,1,1,1)-(As,As,As,As)

DISP.BLEND_DST.DST_ALPHA
(Ad,Ad,Ad,Ad)

68 Chapter 6 o Graphics Drivers

Writing your own driver

disp _surface

_t

DISP.BLEND_DST.ONE_ MINUS_DST.ALPHA
(1,1,1,1)-(Ad,Ad,Ad,Ad)

Thedisp _surface

—t structure is used as an argument to several

functions, and is also used within other structures (such as

disp —_draw _context

typedef struct disp
int
unsigned
unsigned
unsigned char
unsigned
unsigned
int
int
disp —_color _t
int
unsigned

} disp _surface _t;

-t). Here is its definition:

—surface {
size
pixel_format,
offset

* vidptr;
stride
flags
height
width;
* pal_ptr;
pal_valid_entries
reserved [2];

The members are defined as follows:

size
pixel.format
offset
vidptr

stride

flags

height

width

pal_ptr

Size of the structure.

Defined above.
Device-dependent address.
Virtual address.

In bytes (see diagram below).
Surface flags, defined below.

Height, in number of scan lines (see diagram
below).

Width, in pixels (see diagram below).

Pointer to the palette for this surface. If not a palette
type, this pointer iNULL .

Chapter 6 e Graphics Drivers 69

Writing your own driver

pal_valid_entries

Number of entries that are valid in tipal_ptr
palette. This is used to limit the size of the palette
table in case only a few colours are used.

reserved Reserved, must be zero.

Relationship of stride height, and width
The three memberstride, height andwidth are used to define a
surface as follows:

Stride

< >

A

Width Not used

N

Height
A
\ 4

! NN

Not used

End of
memory

Memory layout.

The entire content of the box represents the total memory area
available, the non-shaded portions represent the memory area that's

70 Chapter 6 o Graphics Drivers

Writing your own driver

actually used for the surface. Note that it's importamaboverwrite
the “not used” areas.

flags

Theflagsmember is a bitmap of the following values:

DISP-SURFACEDISPLAYABLE
Surface can be displayed via CRT controller.

DISP.SURFACECPU_LINEAR_READABLE
CPU can read this surface directly.

DISP.SURFACECPU.LINEAR WRITEABLE
CPU can write to this surface directly.

DISP.SURFACE2D_TARGETABLE
2-D engine can render into surface.

DISP-SURFACE2D_READABLE
Surface is read-accessible by 2-D engine.

DISP.SURFACE3D_TARGETABLE
3-D engine can render into surface.

DISP.SURFACE3D_READABLE
Surface is read-accessible by 3-D engine.

DISP.SURFACEOPTIMIZED_CPUACCESS
Video memory is optimized for CPU access.

DISP-SURFACEOPTIMIZED_ENGINE_ACCESS
Video memory is optimized for graphics engine access.

DISP.SURFACEOPTIMIZED_UNBIASED

Video memory is equally accessible by the CPU and the
graphics engine, or we don’t know, or care.

Chapter 6 o Graphics Drivers 71

Writing your own driver

DISP.SURFACESCALERDISPLAYABLE
Surface can be displayed via video overlay scaler.

DISP_.SURFACEVMI _.TARGETABLE
Video in hardware can write frames into surface.

DISP.SURFACEDMA _SAFE

DMA engine can treat the surface memory as one contiguous
block.

disp —_mode_info _t Thedisp _mode_info _t structure is defined as follows:

typedef struct disp —mode_info {
short size
unsigned mode
int xres yres

unsigned pixel_format
unsigned flags

uintptr _t fb_addr,
unsigned fb_stride
unsigned fb_size
unsigned cric_start_gran;
unsigned caps

union {
struct {
short refresh [DISP _.MODENUMREFRESH)];
} fixed;
struct {
int min_vfreq maxvfreqg
int min_hfreq maxhfreqg
int min_pixel_clock
int max_pixel_clock
uint8 _t h_granularity,
uint8 _t v_granularity,
uintlé _t reserved®
} generic;
P

unsigned reserved [6];
} disp _mode_info _t;

The members are defined as follows:

size Size of this structure.

72 Chapter 6 o Graphics Drivers

Writing your own driver

mode Mode number.
Xres yres Display dimensions in pixels.

pixel.format Frame buffer pixel format.

flags See below.

fb_addr Physical address of the frame buffer.
fb_stride Stride of the frame buffer (in bytes).
fb_size Size of the frame buffer (in bytes).

crtc_startgran Values passed in theffsetparameter to the
devggetmodefuncs(junctionsetdisplay.offset()
must be a multiple of this value.

caps List of available features, see below.
fixed.refresh Array of possible refresh rates (in Hz) for this mode.

generic.minvfreq generic.maxvfreqg generic.minhfreq
generic.maxhfreq
Monitor limits in Hz.

generic.minpixel clock, generic.maxpixel clock
Pixel clock rates in kHz.

generic.hgranularity

Horizontal granularity; X resolution must be a
multiple of this.

generic.vgranularity

Vertical granularity; Y resolution must be a multiple
of this.

generic.reservedOeserved
Reserved, do not examine or modify.

Chapter 6 o Graphics Drivers 73

Writing your own driver

disp —mode_info _t flagsmember

Theflagsmember is selected from the following:

DISP.MODE_TVOUT
Indicates that this mode drives a TV, and not a monitor.

DISP.MODE_TVOUT_WITH_MONITOR

Indicates that this mode can drive a TV and a monitor
simultaneously.

DISP.MODE_TVOUT_OVERSCAN

Indicates that the overscan goes beyond the edge of the TV (i.e.,
there are no borders at the edges).

DISP.MODE_TVOUT_NTSC

Indicates that this mode generates NTSC format video signal.
DISP.MODE_TVOUT_PAL

Indicates that this mode generates PAL format video signal.

DISP.MODE_TVOUT_SECAM
Indicates that this mode generates SECAM format video signal.

Note that there’'s a macr®ISP.TVOUT.STANDARD(}hat’s used to
return just the type of output (PAL, NTSC, SECAM).

disp —_mode_info _t capsmember

And thecapsmember:

DISP.MCAP_SET.DISPLAY_OFFSET

The display controller can point to different areas of the video
RAM. This indicates that its offset into video RAM is not
“hard-coded” meaning that it can perform double-buffering
operations.

74 Chapter 6 o Graphics Drivers

Writing your own driver

disp _crtc _settings

_t

DISP.MCAP_DPMS_SUPPORTED
Display supports DPMS (if this bit set), else no support.

disp —_mode_info _t modenum member

And themodenummember:

DISP.MODE_NUM_REFRESH

Returns the size of theefreshmember (i.e., maximum number
of refresh rates supported for a given mode).

The following is the definition for thdisp _crtc _settings _t
structure, which contains the CRT Controller (CRTC) settings:

typedef struct disp —crtc _settings {

short xres

short yres

uint8 _t h_granularity,
uint8 _t v_granularity,
short refresh
unsigned pixel—clock
uint8 _t sync_polarity;
short h_total,

short h_blank_start,
short h_blank_len;
short h_sync_start,
short h_sync_len;
short v_total;

short v_blank_start,
short v_blank_len;
short v_sync_start;
short v_synclen;
unsigned flags
unsigned reserved [8];

} disp _crtc _settings _t;

Chapter 6 o Graphics Drivers 75

Writing your own driver

With the members defined as follows (note thathtgranularity,
v_granularity, pixel.clock, syncpolarity, h_total, h_blank start,
h_blanklen, h_syncstart, h_synclen, v_total, v_blank start,
v_blanklen, v_syncstart, andv_synclenmembers are used in
conjunction with “generic” modes only (with threfreshmember
applicable to both generic and fixed modes); segygtenodelist()
function in the section odevggetmodefuncs()above, for more
information):

Xres yres Horizontal and vertical resolution, respectively, in
pixels.
h_granularity, v_granularity

Horizontal and vertical granularity; X and Y
resolutions must be multiples of these
(respectively).

refresh Refresh rate (in Hz)
pixel.clock Pixel clock rate (in kHz)
syncpolarity See below.

h_total, h_blank start, h_blanklen, h_syncstart, h_synclen
Detailed monitor timings indicating the horizontal
total, blanking start, length of blanking, horizontal
sync start and length; given in units of pixels.

v_total, v_blank start, v_blank len, v_syncstart, v_.synclen
Detailed monitor timings indicating the vertical
total, blanking start, length of blanking, horizontal
sync start and length; given in units of lines.

flags There are currently no flags defined.

reserved Reserved, do not examine or modify.

76 Chapter 6 Graphics Drivers

Utility Functions

The syncpolarity member

The values defined fayncpolarity consist of none, one, or both of
the following bits:

DISP.SYNC_POLARITY_V_POS

Vertical synchronization is indicated by a positive signal if this
bit is on, else negative.

DISP.SYNC_POLARITY_H_POS

Horizontal synchronization is indicated by a positive signal if
this bit is on, else negative.

Or, you can use the following manifest constants (composed of the
bits from above):

DISP.SYNC_POLARITY_NN
Both synchronization signals are negative.

DISP.SYNC_POLARITY_NP
Horizontal negative, vertical positive.

DISP.SYNC_POLARITY_PN
Horizontal positive, vertical negative.

DISP.SYNC_POLARITY_PP
Both synchronization signals are positive.

Utility Functions

The following sets of utility functions can be useful when writing
graphics drivers:

e display driver utilities

Chapter 6 o Graphics Drivers 77

Utility Functions

78

Display driver
utilities

e PCI configuration access utilities
e memory manager utilities

e video memory management utilities

These functions are provided in thsputil (display utilities)
library.

The following functions are provided in the display driver utilities set:

e disp.registeradapter()

e dispunregisteradapter()

e disp.acquirevgaresources()
e dispreleasevgaresources()
e disp.perror()

e dispprintf()

e disp.usecspin()

int disp_register_adapter (disp _adapter _t * adapte)

Registers with the display utilities libraries. This call performs things
like the calibration of timers.

int disp_unregistecadapter (disp _adapter _t * adapte)

Frees any resources allocated by the preceeding
dispregisteradapter()function call, above.

int disp_acquire_vga_resources(disp _adapter _t * adapte)

Acquires access to the VGA registers; you must call hlefore
activating any of the VGA registers.

Chapter 6 e Graphics Drivers

Utility Functions

PCI configuration
access utilities

int disp_releasevga_resources(disp —_adapter _t * adapte)

Opposite ofdisp.acquirevgaresources()you would call this when
you are done with the VGA registers. You must de-activate the card’s
response to VGA cycles before this function is called.

void disp_perror (disp _adapter _t * adapter char * whal

Prints the string given bwhatalong with the string interpretation of
the globalerrnoto the graphics framework’s debug port (as given in
theadaptermemberdbgfilg. Functions similarly to the standard C
library’s perror() function.

void disp_printf (disp _—adapter _t * adapter const char
*fmt, ...)

Prints the given string (starting with ttieat parameter and any
additional parameters specified) to the graphics framework’s debug
port (as given in thadaptermemberdbgfilg. Functions similarly to
the standard C library’grintf()/fprintf() functions.

void disp_usecspin(unsigned usec$

Busy waits for at leasisecqus. While polling is generally

discouraged in a realtime operating system, sometimes the hardware
demands that registers be accessed only after a certain (small) delay.
Therefore, use this function onlyabsolutelynecessary — since the
graphics drivers usually run at a priority higher than “normal” user
processes, this could have a direct, negative impact on the scheduling
latency for normal user processes.

The following functions are provided in the PCI configuration access
utilities set:

e disppci.init()
e disp_pci_shutdown()

Chapter 6 o Graphics Drivers 79

Utility Functions

e disppci_read.config()

e disp_pci_write_config()

e disp.pci_devfind()

e disppci_devread.config()
e disp.pci_devwrite_config()

e disp.pci.info()

int disp_pci-init (disp _—adapter _t * adapter unsigned
flag9

Performs gci_attach.device()using thepci_vendorid, pci_deviceid,
andpci_.indexmembers of thadapterstructure. For a description of
theflagsargument, see theci_attach.device()manpage.

int disp_pci—shutdown (disp _adapter _t * adapte)

Effectively callspci_detach(}to release the resources from a previous
disppciinit() function, above.

int disp_pci_read_config (disp —_adapter _t * adaptes
unsigned offset unsigned cnt, size _t size void * bufptr)

PCI configuration registers can be byte, word, or double-word. This
function reads a PCI configuration register (or registecsifntis
greater than one), as given bffsetandsize into the data area given
by bufptr. See thepci_read.config()function for details on the return
values.

int disp_pci—write_config (disp _adapter _t * adaptet
unsigned offset unsigned cnt, size _t size void * bufptr)

Writes a PCI configuration register (or registersatintis greater
than one), as given hyffsetandsize from the data area given by

80 Chapter 6 e Graphics Drivers

Utility Functions

Memory manager
utilities

bufptr. See theci_write_config()function for details on the return
values.

int disp_pci—_dew_find (unsigned devid unsigned venid
unsigned index unsigned * bus unsigned * devfung

Similar topci_find_device()— this function discovers a devicd®sis
anddevfuncvalues in order to let a driver talk to a PCI device other
than the one specified in thiisp _adapter _t structure.

int disp_pci_dev_read_config (unsigned bus unsigned
devfung unsigned offset unsigned cnt, size _t size void
* bufptr)

This function reads a PCI configuration register (like
disp_pci_read.config() above, but from a specifltausand device
(devfung). Error return codes are documenteghai_read.config()

int disp_pci—dev_write_config (unsigned bus unsigned
devfunc unsigned offset unsigned cnt, size _t size void
* bufptr)

This function writes a PCI configuration register (like
disppci_write_config() above, but to a specifllusand device
(devfung). Error return codes are documentegbaiwrite_config()

int disp_pci-info (unsigned * lastbus unsigned * version
unsigned * hardware

Cover function fompci_present()

The following functions are provided in the memory manager utilities
set:

e dispmmapdevicememory()

e dispmmapdeviceio()

Chapter 6 o Graphics Drivers 81

Utility Functions

disp-munmapdevicememory()

disp.physaddr()

dispalloc_.dmasafe()

disp free. dmasafe()

void * disp-mmapdeviceememory (paddr _t base size _t len,
int prot, int flagy

Creates a virtual address space pointer to the physical address given in
base which islenbytes in length. Therot parameter is selected from
one or more of the following bitmapped flags:

DISP.PROTREAD
Allow read access.
DISP.PROTWRITE
Allow write access.
DISP.PROT.NOCACHE
Do not cache the memory (useful for register access, for
example).
DISP.MAP_LAZY

Allows CPU to delay writes, and combine them into burst
writes for performance. Ideal for mapping frame buffers (Intel
calls it “write combining”). On CPUs that don’t support this
feature, the flag is ignored.

Theflagsparameter i® or the constanbISP.MAP_BELOW16M
(indicating that the memory must lie within the first 16 megabytes of
physical address space).

82 Chapter 6 e Graphics Drivers

Utility Functions

unsigned long disp_mmap.devicelio (size _t len, paddr _t
base

Creates either a virtual address space pointer (like
disp.mmapdevicememory() above, or returns its argumerdse A
virtual address space pointer is returned on non-x86 architectures
(because these don't have a separate “I/O” space), whereas the
argumenbaseis returned unmodified on x86 architectures.
Regardless of the architecture, the return value can be used with
functions likein8(), out8(), etc.

void disp-munmapdeviceememory (void * addr, size _t len)

Invalidates (“unmaps”) the virtual address pointeaddr.

paddr _t disp_phys.addr (void * addr)

Returns the physical address corresponding to the virtual address
passed iraddr. This call is useful with devices that use DMA (which
must be programmed with the physical address of the transfer area).
Note that thepaddr _t physical address is only valid for a maximum
of _PAGESIZEbytes (i.e., from the physical address corresponding to
the passed virtual address up to and including the end of the page
boundary). For example, ifPAGESIZEwas4096(0x1000, and the
virtual address translated to a physical addre€xo®000100then

only the physical address ran@ge7B00010&through to0x7BO0O0FFF
(inclusive) would be valid.

void * disp_alloc_dmasafe(int size unsigned prot,
unsigned flag9

Creates a virtual address pointer to an area somewhere in memory that
conforms to thesize prot andflagsparameters that is guaranteed to be
safe to use with a DMA controller on the particular architecture. This
implies that the data area is physically contiguous, and is addressable
by the DMA controller. Thesize prot andflagsparameters are the

same as those passediisp mmapdevicememory(jabove.

Chapter 6 e Graphics Drivers 83

Utility Functions

84

Video memory
management
utilities

Note that you don't supply baseparameter as with the other
mapping function; instead, this function finds a free block of memory
(called “anonymous” memory) and allocates it.

void disp_free_dmasafe(void * addr, int siz@

Invalidates the virtual address pointeraddr and deallocates the
memory.

The following functions are provided in the video memory
management utilities set:

e disp.vmalloc_surface()
e disp.vmfree.surface()

e dispvmsurfaceinfo()

e dispvmmemavail()

e disp.vmwalk surfacelist()
e disp.vm.createpool()

e disp.vm.destroypool()

Your driver must supply these functions; at a bare minimum your
driver's versions of these functions should simply call the provided
library entry points.

disp _sid _t disp_vm_alloc_surface (disp _vm_pool _t * pool,
int width, int height unsigned format unsigned flags
void * user_info)

Allocates a surface from the pool of surfaces. If successful, the
surface memory returned conforms to flagsandformat
parameters. If a surface can't be found that matches those
requirementsNULL is returned. Note that the surface memory is
identified by a handle (the return parameter, of tggp _sid _t).

Chapter 6 e Graphics Drivers

Utility Functions

Use thedisp.vm.surfaceinfo() function (below) to get information
about the surface. Thmool parameter that you pass in is the return
value from thedisp.vm.createpool() function (below) — this implies
that you must first create the pool before using it.

Theflagsparameter is selected from the set of manifest constants
defined in theélagsargument for thelisp _surface _t data type,
above.

Theformatparameter is selected from the set of manifest constants
beginning withDISP_.SURFACEFORMAT_* and is documented above,
under the description fatevgget corefuncs()

int disp_vm_free_surface (disp _adapter _t * adapter
disp _sid _t sid)

Releases the surface memory identifiedsloyback to the surface
memory manager’s pool.

int disp_vm_surface.info (disp _adapter _t * adapter
disp _sid _t id, disp _surface _t * surf, void ** user-info)

If surf is notNULL, returns information about the surface identified
by id into thedisp _sid _t pointed to bysurf. If userinfois not
NULL, this function puts whatever value was supplied (in the
userinfo parameter) when the surface was created (via

disp.vm alloc_surface</()) back into theuserinfo.

unsigned long disp_vm_mem.avail (disp _vm_pool _t * pool)
Returns how much memory is available in the pool identifiepbg,

in bytes.

int disp_vm_walk_surface.list (disp —vm_pool _t * pool, int
(* callback (disp —_adapter _t * disp _sid _t))

Chapter 6 e Graphics Drivers 85

Utility Functions

Graphics helper
utilities

The function is used to iterate across the list of surfaces associated
with pool. The function returns & in case of an (internal) error, else
0 to indicate success.

The user-supplied callback functicallback()will be invoked for

each surface ipoolwith adisp _adapter _t pointer and a surface

id. The return values from the user-supplied callback functionlaie
stop walking, an@d otherwise (positive values are currently reserved).

disp _vm_pool _t * disp_vm_create_pool (disp _adapter _t
*adapter disp _surface _t * surf, int bytealign

Used to create a new memory pool for the memory manager. You
pass thedapterassociated with this memory pool, a pointer to the
surface insurf, and a byte alignment parameteytealign The
bytealignparameter indicates the alignment for the memory manager
— all chunks of memory returned by the memory manager for this
pool will be aligned to the number of bytes specified.

The return value is disp _vm_pool _t pointer (effectively a
“handle”) which can be used with the ottagisp.vm*() functions.

int disp_vm_destroy_pool (disp _adapter _t * adapter
disp _vm_pool _t * pool)

Reallocates all surfaces and releases the resources associated with
tracking the pool allocation.

The following functions are provided in the graphics helper utilities
set:

e Core functions:

- ffb_coreblitl()
- ffb_coreblit2()

- ffo_draw_span8(), fflb_draw_span16(), flo_draw_span24(),
andffb_draw_span32()

86 Chapter 6 e Graphics Drivers

Utility Functions

- ffb_draw_spanlist_8(), ffb_draw_spanlist_16(),
ffb_draw_spanlist_24(), andffb_draw_spanlist_32()

- ffb_draw_solid_rect.8(), ffb_draw_solid_rect 16(),
ffo_draw_solid_rect 24(), andffb_draw_solid_rect 32()

- ffb_draw.line_pat8x18(), ffb_draw._line_pat8x116(),
ffo_draw_line_pat8x124(), andffb_draw_line_pat8x132()

- ffb_draw._line_trans8x18(), ffb_draw._line_trans8x116(),
ffo_draw_line_trans8x124(), andffb_draw_line_trans8x132()

- ffb_draw_rect pat8x88(), ffb_draw_rect pat8x816(),
ffo_draw_rect_pat8x824(), andffb_draw_rect pat8x832()

- ffb_draw_rect trans8x88(), ffb_draw_rect trans8x816(),
ffb_draw_rect trans8x824(), andffb_draw._rect trans8x832()

Context functions:

ffb_ctx.draw_span()

ffb_ctx.draw_spanlist()

ffb_ctx draw_rect()
ffb_ctx blit()

Draw state update notify functions:

- ffb_updatedraw_surface()
- ffb_updatepattern()

- ffb_ctx.updategeneral()

- ffb_ctx.updatefg_color()

- ffb_ctx.updatebg color()

- ffb_ctx.updaterop3()

- ffb_ctx.updatechromay()

- ffb_ctx.updatealpha()

Colour space conversion utility:

- ffb_color_translate()

Miscellaneous

Chapter 6 o Graphics Drivers 87

Utility Functions

- ffb_wait.idle()
- ffb_setdraw_surface()

e Draw function retrieval routines:

- ffb_getmiscfuncs()
- ffb_getcorefuncs()
- ffb_get.contextfuncs()

The assumption with these functions is that you’ll use them during the
creation of your driver. For example, you may start out with a driver
that doesn’t actually do very much, and instead relies upon the
functionality of these routines to perform the work. As you progress
in your development cycle, you'll most likely take over more and

more functionality from these functions and do them in a card specific
manner (e.g., using the hardware acceleration).

In general, this can be done quite simply by taking the function table
pointer that’s passed to you in your initialization function, and calling
the appropriate function (one of the three supplied functions

ffb_get corefuncs()ffb_get contextfuncs(jandffb_get miscfuncs()to
populate your function table array with the “defaults” from this
library. Note, however, thatll functions in the library are exposed;
you donot have to bind to them by way of tHéb_get *() functions;

you can just simply link against them.

The next step in the development cycle would be to take over some of
the functions, and follow the outlines discussed above for each of
them. If you find that you're able to support a given operation in a
card specific manner, you'd demultiplex that case out of the function
call and handle it, while relying on the library routines to perform
functions that your hardware doesn’t support or that you don’t wish to
write the code for right at that point. Since the supplied libraries are
hardware independent (i.e., everything is implemented in software),
they'll be (from “somewhat” to “much”) slower than your
hardware-accelerated versions.

Another advantage of the way that the library and graphics framework
are structured is that in case your driver becomes out-of-date (i.e., a

88 Chapter 6 e Graphics Drivers

Utility Functions

newer version of the graphics framework has been released which has
more functions), the shared library that's supplied with the newer
version will know how to handle the extra functions, without any
additional intervention on your part. You may then release a new
version of your driver that supports accelerated versions of the extra
function(s) at your convenience.

Note that there are four sets of functions for some of the core
functions supplied, optimized based on the pixel depth. For example,
instead of the “expected” single functiffib_draw_span() there are in
fact four of them:

1 ffb_draw_span8()

2 ffb_draw_span16()
3 ffb_draw_span24()
4 ffb_draw_span32()

Which specific one gets bound to tfile_draw_span()function pointer
in the core functions arragiep _draw _corefuncs _t type)
memberdraw_spandepends on thpixelformatargument passed to
ffb_get.corefuncs(below).

The other functions (that aren't listed as having 8/16/24/32 bit
pixel-depth variants) support all pixel depths.

The impact on your driver is that you may choose to call the
ffb_get.corefuncs(four times, (once for each colour depth), and fill
four separate arrays, or you may choose to call it whengwer
getcorefuncs(xall-in is called, so that you can dynamically bind the
appropriate library routines. Thyet corefuncs(xall-in gets called
very infrequently (only during initialization and modeswitch
operations) so efficiency isn’t paramount in this case.

Chapter 6 e Graphics Drivers 89

Utility Functions

int ffb_get_miscfuncs(disp _adapter _t * context
disp _draw _miscfuncs _t * funcs int tabsizé

This function is used to populate the pasiatcspointer to function
pointer table with the miscellaneous functions from the flat frame
buffer library.

int ffo_get_corefuncs(disp _adapter _t * context unsigned
pixel_format disp _draw _corefuncs _t * funcs int tabsiz¢

This function is used to populate the pastattspointer to function
pointer table with the core functions from the flat frame buffer library.

int ffb_get_contextfuncs(disp _adapter _t * context
disp _draw _contextfuncs _t * funcs int tabsizé

This function is used to populate the pasiattspointer to function
pointer table with the context functions from the flat frame buffer
library.

disp —_color _t ffb_color_translate (disp _draw _context _t
*context int srcformat int dstformat disp _color _t color)

Takes thecolor that corresponds to the surface type specified by
srcformat and returns disp _color _t that corresponds to the same
(or closest available) colour in the surface type specifieddtformat

Note that it's not always possible to get an exact match — for
example, if the source surface was a 24 bits-per-pixel type, (e.g.
DISP.SURFACEFORMAT_RGB889 and the destination had less
colours (e.gDISP_.SURFACEPALS), then the colour returned would
be a “closest match” to that available on the destination surface.

90 Chapter 6 Graphics Drivers

PETE — Photon 1.XX drivers

PETE — Photon 1.XX drivers

Pete’s gonna describe how the 1.XX drivers relate to the
“new-and-improved” 2.00 driver structure described herein.

PETE — New API features

Pete’s gonna describe stuff here that's new; like offscreen memory
usage (linear vs rectangular).

Chapter 6 o Graphics Drivers 91

Chapter 7

Input Devices

In this chapter. ..

Input drivers
Writing an input driver

Chapter 7 e Input Devices 93

Input drivers

Types of event bus
lines

Input drivers

This chapter provides an overview of writing input device drivers for
Neutrino. Use this document along with the code in the sample
directory.

The following is a brief overview of how the input driver framework
functions. The input driver consists of two components, a group of
input modules and a library used in manipulating these modules. At
run time modules are linked together to form a data path used to
gather data from an input device, process it, and output it to the
system. There are three types of modules, device modules, protocol
modules and filter modules. They are typically organized as follows:

Interface 4—{ Filter M Protocol M Device dlnp.ut
evice

Top Event bus line Bottom

Input chain.

When modules are linked together, they form an “event bus line.”
Data passes from an input device up the event bus line and out to the
system. There are three different types of event bus lines:

e relative
e absolute

e keyboard

The term “relative” simply means that the device provides position
data that is relative to the last location it reported. This is typically the
method that mouse-type pointing devices use.

An “absolute” bus line is used with devices that provide position data
at absolute coordinates. An example of this is a touchscreen.

Chapter 7 e Input Devices 95

Input drivers

Finally, a “keyboard” type of bus line is one in which some sort of
keypad device provides codes for every key press and release.

Modules A device layer module is responsible for communicating with a
hardware or software device. It typically has no knowledge of the
format of the data from the device; it's only responsible for getting
data. A protocol layer module interprets the data it gets from a device
module according to a specific protocol.

A filter module provides any further data manipulation common to a
specific class of event bus.

Modules are linked together according to the command line
parameters passed into the input driver. The command line has the
following format:

devi —driver_name [option§ protocol [protocolLoptiong [device [deviceoptiond]

In this example:

devi —hirun ps2 kb -2 &

hirun the hirunner input driver, which contains mouse and
keyboard drivers used in most desktop systems.

ps2 specifies the PS/2 mouse protocol, a three byte protocol
indicating mouse movement and button states.

kb specifies thé&b device module, which can communicate
with a standard PC 8042-type keyboard controller.

-2 specifies an option to thé module, telling it to set up
communication to its second (or auxilliary) port, which is
for a PS/2 mouse.

Specifying a filter module isn’t necessary because the three classes of
event bus lines are represented by three modules, callechbs ,

96 Chapter 7 e Input Devices

Input drivers

Interface to the
system

andkeyboard . When the input driver parses the command line, it
can tell from theps2 module that it needs to link in thel

filter-module. The only time you would specify a filter module on the
command line is if you need to pass it optional command line
parameters, for example:

devi —hirun ps2 kb -2 rel -G2

This tells the relative filter module to multipl¢ andY coordinates by
2, effectively providing a gain factor (a faster-moving mouse).

After data has passed from the input device up the event bus line to
the filter module, it's passed to the system. There are currently two
interfaces to the system:

Photon interface

This requires that the Photon server is running. It passes data
from the input to Photon via raw system events. Keyboard data
is given by raw keyboard events, while relative and absolute
data is given by raw pointer events. See the Photon docs to get
more info on Photon events.

Resource manager interface

This interface establishes a pathname undefdidae directory,
which can be read by applications to get input data. For
example, a relative event bus line would be represented by the
file /devimouse0 . Reading fromdev/mouse0 would

provide pointer packets, as defineckisys/dcmd _input.h>
Multiple opens are allowed, and device files can be opened in
blocking or non-blocking mode, with I/O notification (i.e.
select() ionotify()) supported.

The default interface started by the input system is the Photon
interface. Unless you have a need to run input drivers without Photon,
you'll never need to use the resource manager interface. The resource
manager interface is started by passing-th@ption to thedevi —*

Chapter 7 e Input Devices 97

Input drivers

98

Source file
organization for
devi -*

driver. The Photon interface can be disabled by passingRhaption
to thedevi —* driver.

The input (ordevi —* source base is organized as follows:

devi
|
[el el et et
| | I I
lib hirun sample elo

Thelib directory contains “glue” code used by all drivers. It

contains the command line parsing code, the code used to manipulate
modules and event bus lines, the code for the photon and resmgr
interfaces, as well as the filter modulesl (, abs, andkeyboard).

In addition, thdib directory also contains functions used by

modules to request services of the input system (e.g. for attaching
interrupts and pulse handlers, mapping device I/O space, etc.)

It's recommended that you do not change anything irlithe

directory. The source code is there simply to aid in understanding and
debugging. The implementation of it could change internally at any
time, although the interfaces used by the modules will not change.

Thehirun directory is an example of an actual input driver,
devi —hirun . In this directory, you'll find various device and
protocol modules.

Theelo directory contains source for the “ELO” touchscreen drivers.

When writing your own input driver, you would create your own
directory and put your new input modules there.

Chapter 7 e Input Devices

Writing an input driver

Writing an input driver

To write an input driver, you must create your own input module. The
sample directory contains a sample skeleton for creating a module.
We recommend that you use this as a starting point.

A module is represented by a data type calledit _module _t . It
contains various data fields and function pointers representing its
interface. Writing an input module consists of simply creating an
input _module _t representing your module and filling in the
relevant interface functions.

The code in the sample directory provides tons of comments detailing
the steps required to initialize your module, and what to put in your
module’s functions.

The modulesamp_dev is an example of a device module. The
modulesamp_proto is the MS mouse protocol code with lots of
comments. ThREADMEile in the sample directory also talks about
writing a combination device/protocol module. This case is very
common when writing input drivers for embedded systems.

In addition, theREADMEile also provides further background info on
how the system processes data frkeyboard andabsolute
devices.

Chapter 7 e Input Devices 99

Chapter 8

Media Players

In this chapter. ..
Media Players

Using the supplied plugins — writing your own player
Writing your own media plugin

Chapter 8 e Media Players 101

Media Players

Media Players

This chapter describes the media player plugins in detail.

A media player plugirfor just “plugin”) is either a separate process,

or a DLL, thatis responsible for handling a particular type of medium.
By “handling” we mean performing a series of functions so that a
high-level (perhaps GUI-based) program can simply do functions like
“play a DVD movie,” or “play an audio track” from the media.

In this chapter, we’ll look at both how you’'d use the existing
QNX-supplied plugins, as well as how you’d write your own.

@ @@ more stuff here about the general case. ..

Using the supplied plugins —
writing your own player

We provide a number of plugins that you can write your own players
for:

e DVD player

e MPEG audio player

e MPEG video player

e Audio player (for non-MPEG audio, e.gvav)
e CD audio player

While these plugins are all different, at the highest level they share the
following characteristics:

e the player loads them as a shared object (DLL)

e an initialization function is provided

Chapter 8 o Media Players 103

Writing your own media plugin

104

Binding to the
player

MvPluginCitrl

_t

e several command processing functions are provided

e common data structures are used

Writing your own media plugin

In this section, we’ll see the steps that you need to take to write your
own plugin module. By implication, you'll be able to use this
information to use an existing plugin with your own “player” program
by calling the functions defined in the plugin, just ligeplay does.

Your plugin (in the simplest case) is a DLL that exports one visible
symbol:

#include <sys/Mv.h>

MvIinitF _t Mvinit;

TheMvinitF _t is a pointer to a function that has the following
prototype:

int

Mvinit (MvPluginCitrl -t * pctrl);

When the player loads your DLL, it will search for the symbol
Mvinit, and will then call it with thepctrl variable. Thigpctrl variable
is effectively the “handle” that gets used for all communications
between your DLL and the player.

TheMvPIuginCtrl _t structure is defined as follows:

typedef struct MvPIluginCtrl

{
/I set by the plugin
MvPluginData _t * pdatg
MvPluginFunctions _t * calls;

Chapter 8 ¢ Media Players

Writing your own media plugin

MvPluginFlags _t pflags
unsigned nhotkeys
MvPluginHotkey _t * hotkeys

/I set by the player

MvSetup —t setup
MvViewerCallbackF _t * cby;

void * dll_handle
char * name
unsigned version
unsigned APlversion

} MvPIluginCitrl -t;

The top set of elements is filled in by the plugin whenvbglnit()
function gets called, whereas the bottom set of elements is provided
by the player.

The fields are defined as follows:

pdata A pointer to aMvPluginData _t data type, see
below.

calls A pointer to aMvPluginFunctions _t data type,
see below.

pflags

nhotkeys

hotkeys

setup

cb A pointer to aMvViewerCallbackF _t function, see
below.

dll_handle

name

version

APlversion

Chapter 8 o Media Players 105

Writing your own media plugin

MvPluginData

MvPluginFunctions

_t

t

This data structure is supplied by the plugin itself, and is used to keep
track of whatever context and state information the plugin wishes to
use. There are no restrictions or definitions of its content.

typedef struct MvPluginFunctions

{

void (* terminatg (MvPluginCitrl —t *pdata);

MvMedialnfo _t *(* getitem) (MvPluginCtrl -t *pdata, MvMedialnfoFlag
int (* commangl (MvCommandData _t *cmdData);

} MvPluginFunctions _t;

Each plugin must supply the three functions listed in the table.

terminate() Called by the player to terminate your plugin. Your
plugin should clean up after itself (free up any
resources it may have allocated, quiesce the
hardware, etc.) Note that if your plugin is a DLL
that’s loaded into the player, then your plugin must
not call exit() — this will take down the entire
process, which of course includes the player! It's up
to the player to unload your plugin DLL from itself,
this is not something that you need worry about.

getitem() Used to fetch an item from the plugin, based on the
whichparameter and thedex see below.

command() This is the primary command interface to your
plugin. By calling this function, with themdData
parameter, the player is requesting that your plugin
perform some kind of function. The function codes
and their corresponding parameters are documented
below.

106 Chapter 8 e Media Players

_t

Writing your own media plugin

command() function commands

The following commands are defined for ttemmand(function that
your plugincanhandle — not all commands apply to all plugins, of
course (e.g.CMD_PLUGIN_SELECT.SUBTITLE has no meaning to a
pure audio plugin).

CMD_PLUGIN_.OPENURLS

This is usually the first command given to a plugin, and gives it
the URL of the item to act upon.

CMD_PLUGIN_CLOSE

Tells the plugin that the player is finished with the URL that
was opened vi&@MD_PLUGIN_.OPENURLS. The plugin should
discontinue rendering the item.

CMD_PLUGIN_START

Begins rendering the item (e.qg., for an audio wave file, this
command will begin playing the audio file; for an MPEG video,
this command will begin displaying the video and playing the
associated audio track).

CMD_PLUGIN_PAUSE
Pauses the current rendering operation.

CMD_PLUGIN_STOP
Stops the current operation, but does not close the item.

CMD_PLUGIN_SEEK.TO
Moves the current position within the item to a new location.

CMD_PLUGIN_SEEK RELATIVE

Selects a different item (for example, on an audio CD, this
would be used to select a different track for playing).

CMD_PLUGIN_SET_.PARAMETER

ReferencestvPlaybackParams _t to indicate a parameter that
should be adjusted.

Chapter 8 e Media Players 107

Writing your own media plugin

CMD_PLUGIN_SET-WINDOW

CMD_PLUGIN_SET.STOPTIME
Not implemented.

CMD_PLUGIN_DISPLAY _GUI
Tells plugin to update its GUI.

CMD_PLUGIN_GET_STATUS

Query plugin as to current position within item (e.g., on an
audio item, this tells us the current position within a track)

CMD_PLUGIN_HOTKEY
Not implemented.

CMD_PLUGIN_EJECTDISK
Bring on the dancing bears of “duh!”

CMD_PLUGIN_LOAD _DISK

Opposite 0CMD_PLUGIN_EJECTDISK (i.e., send the dancing
bears of “duh” away).

CMD_PLUGIN_SELECT
DVD player, corresponds to buttons (JBoucher).

CMD_PLUGIN_SELECT.UP
DVD player, corresponds to buttons (JBoucher).

CMD_PLUGIN_SELECT.DOWN
DVD player, corresponds to buttons (JBoucher).

CMD_PLUGIN_SELECTRIGHT
DVD player, corresponds to buttons (JBoucher).

CMD_PLUGIN_SELECTLEFT
DVD player, corresponds to buttons (JBoucher).

108 cChapter 8 e Media Players

Writing your own media plugin

CMD_PLUGIN_SELECTAUDIO
DVD player, corresponds to buttons (JBoucher).

CMD_PLUGIN_SELECT. SUBTITLE
DVD player, corresponds to buttons (JBoucher).

CMD_PLUGIN_MENU
DVD player, corresponds to buttons (JBoucher).

CMD_PLUGIN_ANGLE
DVD player, corresponds to buttons (JBoucher).

CMD_PLUGIN_DIRECT.AUDIO
DVD player, corresponds to buttons (JBoucher).

CMD_PLUGIN_SET.SPEED
DVD player, corresponds to buttons (JBoucher).

CMD_PLUGIN.BOOKMARK_SET
DVD player, corresponds to buttons (JBoucher).

CMD_PLUGIN.BOOKMARK_GOTO
DVD player, corresponds to buttons (JBoucher).

CMD_PLUGIN_.BOOKMARK _VIEW
DVD player, corresponds to buttons (JBoucher).

CMD_PLUGIN_KARAOKE _MIX
DVD player, corresponds to buttons (JBoucher).

CMD_PLUGIN_KARAOKE _RECORD
DVD player, corresponds to buttons (JBoucher).

CMD_PLUGIN_PLAY _ALL _FRAMES
DVD player, corresponds to buttons (JBoucher).

CMD_PLUGIN_PLAY _REALTIME
DVD player, corresponds to buttons (JBoucher).

Chapter 8 ¢ Media Players

109

Writing your own media plugin

MvViewerCallbackF _t()

CMD_PLUGIN_RESERVEDO throughCMD_PLUGIN_RESERVED9
Reserved for future expansion.

CMD_PLUGIN_USERO throughCMD_PLUGIN_USER 9

Reserved for custom commands for plugins; these will vary
wildly between plugins. We do not enforce any particular
meaning for these, nor will we ever invoke them from the
standarcphplay player. The idea here is that if you are writing
both the player and the plugin, you can agree on some useful
extensions.

The function that’s supplied by the player is stored in the
MvPluginCtrl _t data structure’sb member. When the player calls
you with a command to perform (via yoasommand(Junction

pointer from theMvPluginFunctions ~ _t data structure that you
supplied), you are expected to perform the command, and then call
the callback function with the status.

Here’s the prototype for the callback function:

typedef void

MvViewerCallbackF _t (MvPluginCtrl —t * ctrl,
MvEventFlags -t change
MvPluginStatus _t const * statuy;

The members are as defined below:

ctrl This is the handle that was passed to the plugin during
the initialization phase. Simply pass this back, as it’s
used by the player to track this particular request.

change A bitmap of flags (see below) indicating which
parameters in thelvPluginStatus ~ _t parameter (the
statusargument) are indeed valid.

status A structure that contains a number of members, as
defined below, that your plugin will fill in with the
required information. The plugin will then set the flags in

110 Chapter 8 e Media Players

Writing your own media plugin

the changemember to indicate which of the fields within
the statusstructure are valid as a result of the call.

The MvViewerCallbackF

—t changeflag

The following table indicates the correspondance between the flags
(of typeenum MvEventFlags) passed in thehangeargument and
the various fields of thetatusstructure. Note that the flags are
individual bits, and can be OR’d together in case multiple fields are

valid.
Flag Member
MVS_PLUGIN_STATE state
MVS_FLAGS flags
MVS_MEDIA mediainfo
MVS_POSITION position
@@@ duration
MVS_VPSIZE vpsize
MVS_ERRORMSG errormsg
MVS_VIDEO_WND_TITLE videoWndTitle
MVS_DISPLAY_INFO displaylnfo
MVS_AUDIO _LIST audioList
MVS_SUBTITLE_LIST subtitleList
MVS_UPDATE_GUI Q@@

Chapter 8 ¢ Media Players

111

Chapter 9

Network Drivers

In this chapter. ..

Network Drivers
Writing your own driver
The details

Chapter 9 o Network Drivers 113

Network Drivers

Network Drivers

REVISION 00 06 12 09 30

Neutrino’s network subsystem consists of a process, calledet ,
that loads a number of DLLs. Each DLL provides one or more of the
following types of service:

up producer produces data for a higher level (e.g., an ethernet
driver provides data from the network card to a
TCP/IP stack)

down producer

produces data for a lower level (e.g., the TCP/IP
stack produces data for an ethernet driver)

up filter a filter that sits between an up-producer and the
bottom end of a convertor (e.g., a protocol sniffer)

down filter a filter that sits between a down-producer and the
top end of a convertor (e.g., NAT)

convertor converts data from one format to another (e.g.,
between IP and Ethernet)

Note that these terms are relativddo-net and do not encompass
any nonio —net interactions. For example, a network card driver
(while forming an integral part of the communications flow) is viewed
only as an “up producer” as far as-net is concerned — it doesn’t
produceanything thato —net interacts with in the “down-going”
direction, even though it actually transmits the data originated by an
upper module to the hardware.

This chapter will focus on the creation of device drivers (e.g. for a
network card). We’'ll take a look at:

e the big picture; what all the pieces are

e lifecycle of a packet

Chapter 9 o Network Drivers 115

Network Drivers

116

The big picture

From the command line, when you start-net , you tell it which
protocols to load:

$ io —net —del900 verbose —pttcpip if=en0:11.2 &

This would causé -net to load thedevn -el900 ethernet driver,
and the tiny TCP/IP protocol stack. Theetbose " and

“if=en0:11.2 " options are “suboptions” passed to the individual
components.

Alternatively, you can also use th@unt andumount commands to
start and stop modules dynamically. The previous example could be
rewritten as:

$ io —net &

$ mount -Tio —net -overbose devn -—el900.so
$ mount -Tio —net -oif=en0:11.2 @@@TCPIPQ@@

Regardless of the way that you've started it, here’s the “big picture”
that results:

io-net

TCP/IP
stack

:

IP - EN
convertor

!

Ethernet
driver

Big picture of io-net.

In the diagram above, we've shown-net as the “largest” entity.
This was done simply to indicate that-net is responsible for

Chapter 9 e Network Drivers

Network Drivers

loading all the other modules (as DLLSs), and that it's the one that
“controls” the operation of the entire protocol stack.

The TCP/IP stack is at the top of the hierarchy, as it presents a
user-accessible interface. A user would typically use the socket
library function calls to access the exposed functionality. (The
mechanism used by the TCP/IP stack to present its interface is not
defined byio —-net — it’s a private interface thad -net has no
knowledge of or control over.)

The TCP/IP stack, however, depends on an IP module that knows how
to handle the IP protocol (in terms of converting IP to Ethernet and
vice-versa, and routing information to/from an appropriate Ethernet
module). The IP module sends packets down to the Ethernet driver
(and receives packets from the Ethernet driver and gives them to the
TCP/IP stack).

Finally, at the lowest level, we show an Ethernet driver that accepts
Ethernet packets (generated by the IP module), and sends them out
the hardware (and the reverse; it receives Ethernet packets from the
hardware and gives them to the IP module).

As far as Neutrino’s namespace is concerned, the following entries
will exist:

/dev/io -net
The main device created liyy —net itself.

/devlio -net/en N

The Ethernet device corresponding to LAN(whereN is 0in
our example).

At this point, you couldpen()/deviio -net/en0 , for example, and
performdevctl()operations on it — this is how thecinfo
command gets the ethernet statistics from the driver.

Chapter 9 o Network Drivers 117

Network Drivers

The lifecycle of a
packet

The next thing we need to look at is the lifecycle of a packet — how

data gets from the hardware to the end user, and back to the hardware.

The main data structure that holds all packet data ispke _t data
type (see below). The buffers are managed viarhk.Q() macros

from <sys/queue.h> , and form a doubly-linked list. Buffer data is
stored in anet _buf _t data type (see below). This data type consists
of alist ofnet _iov _t s (each containing a virtual address, physical
address, and length) which are used to indicate one or more buffers:

npkt t net buf t net iov_t
buffers <GP ptrs iov_base
iov_phys data
tot_iov (=3) niov (=1) iov_len
framelen net_iov[] net_iov_t
+other net_buf t :..ov_base data
data iov_phys
(cell, ptrs iov_len
endpoint, .
P niov (=2) net iov t
iface, — -
etc.) net_iov[] / iov_base
iov phys
- Py data
iov_len

net_iov_t relationship.

The TAILQ() macros allow you to iterate through the list of elements.
The following code snippet illustrates:
/I from <sys/queue.h>

#define TAILQ _FIRST(head) ((head) —> tgh _first)
#define TAILQ _NEXT(elm, field) ((elm) => field.tge _next)

net _buf _t *buf;
net _iov _t *iov;

int i;

/I walk all buffers

for (buf = TAILQ _FIRST (&npkt —> buffers); buf, buf = TAILQ _NEXT (buf, ptrs)) {
for (i = 0, iov = buf —> net _iov; i < buf —> niov; i++, iov++) {
/I buffer is o dov —-> iov _base
/I length is :iov => jov _len

118 Chapter 9 e Network Drivers

Network Drivers

Going down

/I physical addr is : iov —> jov _phys
}
}

We'll start with the downward-going direction (from the end-user to
the hardware). A message is sent from the end-user (via the socket
library), and arrives at the TCP/IP stack. The TCP/IP stack does
whatever error checking and formatting it needs to do on the data.
When the TCP/IP stack is ready to send the data off to the IP module,
it allocates a packet buffer. This packet buffer contains just the data
from the TCP/IP stack — no provision is made for any of the other
protocols’ headers or encapsulation information (this is handled later,
by each individual module).

Since the TCP/IP stack and the other modules aren't bound to each
other, it's up toio —net to do the work of accepting the packet from
the TCP/IP stack and giving it to the convertor module. The TCP/IP
stack informdo -net that it has a packet that should be sent to “a
lower level” by calling thex_down()function withinio -net .

io —net looks at the various fields in the packet and the parameters
passed to the function, and calls tixedown()function in the IP
module. Note that theontentsf the packet aren’t copied — since all
these modules (e.g., the TCP/IP stack and the IP module) are
DLL-loaded intoio —net 's address space, all that needs to be
transfered between modules are pointers to the data (and not the data
itself).

Once the packet arrives in the IP module, a similar set of events occur
as described above: the IP module converts the packet to an Ethernet
packet, and sends it to the Ethernet module to be sent out to the
hardware. Note that the IP module will need to add data in front of the
packet in order to encapsulate the IP packet within an Ethernet packet.
(The IP module may also do other “tricks” like fragmenting the
packet.)

Chapter 9 o Network Drivers 119

Network Drivers

120

Going up

seanb sez 000424domments not integrated into above paragraphs
yet -RK):

This is not quite correct. The stack currently registers as a down
producer of type “IP.” Once it calli® —net 's tx down() it's already
passing on a fully-formed IP packet (i.e., fragmentation has already
occurred). What you're describing is something like:

(TCP) producer (down) \
| |
\ |
(TCP/IP) convertor | These are currently
| \ all done inside the
\ / stack. It could be
(IP) producer (down) | done like this, but
| | currently isn't.

v |
(IP EN) convertor /
I
\
(EN) producer (up)

Again, to avoid copying the packet data in order to insert the Ethernet
encapsulation header in front of it, only the data pointers are moved.
By inserting an element at the front of the IOV list (by moving the

IOV entry list down by one entry and placing a new entry at the
“hole™), the Ethernet header can be prepended to the data buffer
without having to actuallgopythe data bytes themselves from the IP
header — the only “data” that got moved was the address/length
tuple(s).

In the upward-headed direction, a similar chain of events occurs. The
ethernet driver receives data from its hardware, and allocates a packet
into which it places the data. (For efficiency, it may use
memory-mapping tricks to cause the hardware to directly place the
packet into a pre-allocated area.) It then callsnet 's tx_up()

function, telling it that it has a packet that's ready to be given to a
higher level.io —net figures out who to give it to, and calls their

rx_up() function. In our example, this would be the IP-EN convertor
module, as it now needs to look at the packet and get at just the IP

Chapter 9 e Network Drivers

Network Drivers

The details

Producers

portion (the packet arrived from the hardware with Ethernet
encapsulation).

Note that in an upward-headed packet, dateeiseradded to the

packet as it travels up to the various modules, so the list of

net _buf _t s is not manipulated. For efficiency, there are two
arguments tdo —net ’'s tx_up() and correspondingly to a registered
module’srx_up() function, namelyoff andframelensuh These are

used to indicate how much of the data within the buffer is of interest
to the level to which it's being delivered. For example, when an IP
packet arrives over the Ethernet, there will be 14 bytes of Ethernet
header at the beginning of the buffer. This Ethernet header is of no
interest to the IP module — it's only relevant to the Ethernet module.
Therefore, theff argument would be set to the valito indicate to

the next higher layer that it should ignore the firgbytes of the

buffer. This saves the various levelsiitn—net from having to
continually copy buffer data from one format to another. The
framelensuboperates in a similar manner, except that it refers to the
tail end of the buffer — it specifies how many bytes should be ignored
at the end of the buffer, and is used with protocols that place a tail-end
encapsulation on the data.

Now that we've seen the overall architecture, and how a packet travels
throughio —-net , we'll look at the details of the various modules.

@@ @ Describe producers; how much detail do we want here?

A producer can be an “up producer,” a “down producer,” or both. The
“up” direction is from the hardware (the lowest level in the-net
hierarchy) towards the end-user, and “down” is the opposite direction.

When a module is an “up producer,” this means that the module may
pass packets on to modules above it. Whether the packet originated at
up-produceg, or up-produceq received it from up-producgrbelow

it, from the next recipient’s point of view the packet came from the up
producer directly below it.

Chapter 9 o Network Drivers 121

Writing your own driver

A producer may produce both types (up and down) of packets, as
would be the case, for example, with the TCP/IP module.

Filters @@ @ Describe filters; how much detail do we want here?

Convertors @@ @ Describe convertors; how much detail do we want here?

On a “downward-headed packet,” a convertor may add headers or
trailers as part of its duties and may manipulate the list of
net _buf _ts.

Writing your own driver

In this section, we’ll look at the work that you must do to write a
driver for your own hardware card. From —net 's perspective, the
card will be an “up producer” because it produces data that goes up
into theio —net infrastructure. It's not a “down producer” because it
doesnot produce any data that goes down in ilne-net

infrastructure — the down-going direction is strictly limited to the
hardware and network interface of the card.

We’'ll look at the following topics:

e general overall structure
e binding your driver tdo -net

e required functions
Our example will be a “null” driver that absorbs any data sent to it (it

pretends it went out the hardware) and, once per second, generates
incoming data (it pretends data arrived from the hardware).

122 Chapter 9 o Network Drivers

Writing your own driver

Binding to
i0 —net

The first thing that you must do in your driver is create a public
symbol calledo_netdll _entryof typeio _net _dll _entry _t. This
is used by théo -net process when it loads your DLL:

/I forward prototype

int

my_init (void *dll —hdl,
dispatch _t *dpp,
io _net _self _t *ion,
char *options);

io _net _dll _entry _t io _net _dll _entry =

{
2,
my_init,
NULL

Here we've simply defined it as containing a single function called
my.init(). At a minimum, this function should:

1 store the passed handle (e hdl argument) and function
pointers array (th@n argument) for future reference

2 register withio —net to indicate what kind of driver this is

3 returnEOK (or an error)

At this point, the first phase of initialization has been performed. In a
“real” driver, the initialization function may perform additional
functions:

1 parse additional command line arguments
2 detect and initialize devices

3 attach interrupts, map memory, and allocate any other required
resources

4 create additional threads

Whenio -net callsmy.init(), it'll pass 4 arguments. We’'ll ignore the
dispatch _t * dppand thechar * options we don’t use them in

Chapter 9 o Network Drivers 123

Writing your own driver

our trivial example here. The other two parameters we’'ll just stash
into global variables for later use:

void *null - _dIl _hdl;

io _net _self _t *null _ion;

int

my_init (void *dll _hdl, dispatch —_t *dpp, io _net _self _t *ion, char *options)

{
null _dil _hdl = dll _hdl

null _ion = ion;

if (Inull _register _device ()

|| (errno = pthread _create (NULL, NULL, null _rx _thread, NULL))) {
return (—1); /I couldn't register, fail; errno says why

return (0); /I success

Notice how we've created a receiver thread (ugitigeadcreate().

For our trivial example, this thread will simply sit in a do-forever

loop, sleep for one second, and then pretend that data has arrived from
somewhere, finally giving the dataitm -net (we’ll see the code for

this shortly). In a real driver, the functionality would be similar; the
thread would be waiting for some kind of indication from the

hardware that data has arrived (perhaps via a hardware interrupt) and
would then get the data from the hardware, process it, and give it to

io —net .

Important! Since your driver is part of a DLL (and is not its own,
seperate process), you'll have tovmry careful about error checking,
memory leaking, and such issues. For example, if youeodtl()

within your driver, you'll take down thentireio —net process! If

your driver gets loaded and unloaded many times, and you have a
memory leak, this will add up and eventually your system will run out
of memory!

124 Chapter 9 o Network Drivers

Writing your own driver

Telling i0 —net
about our
functions

Now, to perform the second phase of our initialization, we need to tell
io —net about our driver. Since we're going to be an “up-producer”

and nothing else, this call is as follows:

/I functions that we supply

io _net _registrant _funcs _t null _funcs =
{

9,

NULL,

null _send _packets,

null _receive _complete,
null _shutdownl,

null _shutdown2,

null _advertise,

null _devctl,
null _flush,
NULL
h
/I a description of our driver
i0 _net _registrant —t null _entry =
{
_REG.PRODUCERJP, /I we're an "up" producer
"devn —null", /I our name
"en", /I our top type
NULL, /I our bottom type (none)
NULL, /I function handle (see note below)
&null _funcs, /I pointer to our functions
0 /I #dependencies
h
int null _reg _hdl;
uintlé _t null _cell;
uintlé _t null _lan;
static int
null _register _device (void)
{
if ((*null _ion —> reg)
(null _dIl _hdl,
&null _entry,
&null _reg _hdl,
&null _cell,
&null _lan) < 0) {
return (0); /I failed
}
return (1); /I success
}

Chapter 9 e Network Drivers

125

Writing your own driver

At this point, you've registered your device driver with—net .

Note that for simplicity, we've used global variables (ermll_cell)

— in areal driver, you'd most likely allocate a structure, and pass a
pointer to that structure around. This helps your driver support
multiple cards, as each card’s context information (or “handle”) can
be passed individually. Thie —-net infrastructure allows you to
associate your own handle with the binding (in thiec.hdl member

of io _net _registrant _t , identified with the comment “function
handle,” in the example above — we've passetlal).

Here's a “big picture” to illustrate:

Endpoint0 Endpoint1 Endpoint 0 Endpoint 1

Cells and endpoints.

As you can see, there are three levels in this hierarchy. At the topmost
level, we have the TCP/IP stack — it provides an interface for
programs to use. For our example, the stack will only be a down
producer (it won't produce or pass on anything for modules above it.)

126 Chapter 9 e Network Drivers

Writing your own driver

In reality, the stack would probably register as both amugdown
producer. This is permitted by —net to facilitate stacking of
protocols.

When the TCP/IP stack started it tatd—-net that it produces packets
in the downward-going direction of type “IP” — there’s no other
binding between the stack and its drivers. We've labelled this
top-level entity as “celR,” which is the identifier used bip —net .

Joining the stack (down producer) to the drivers (up producers), we
have two “convertor” modules. Take the convertor module labelled
“IPeN.” as an example. When this module registered as type
_REG.CONVERTOR ittoldio —net that it takes packets of type “IP”
on top and packets of type “EN” on the bottom.

Again, this is the only binding between the IP stack and its lower level
“drivers.” The IRz portion, along with its ethernet drivers, is called
“cell 0" and the IE; portion, along with its Z-protocol drivers is called
“cell 1” as far aso —-net is concerned.

The purpose of the intermediate convertors is twofold:

1 It allows for increased flexibility when adding future protocols
or drivers (one simply has to write a new convertor module to
connect the two), and

2 it allows for filter modules to be inserted either above or below
the convertor.

Finally, on the bottom-most level of the hierarchy, we have two

different ethernet drivers and two different Z-protocol drivers. These

are “up producers” fronb —-net 's perspective, because they only
generate data in the upward-going direction. These drivers are
responsible for the low-level hardware details. As with the other
components mentioned above, these components advertise themselves
toio —net indicating the name of the service that they're providing,

and that’s what's used by -net to “hook” all the pieces together.

Chapter 9 o Network Drivers 127

Writing your own driver

128

Advertising the
driver’'s
capabilities to
i0 —net

Since all seven pieces are independent DLLs, loaded byet

when it starts up (or later, via tlrount command), it's important to
realize that the interface names are the key to the interconnection of
all the pieces, and that the loading order isn’t importanb—net
figures all this out at runtime.

Continuing with our discussion, the next thing to do is “advertise” the
driver’s capabilities. This is done via timeill_advertise(function

which you call whenever you detect a card. In our simple example,
we’'ll assume that thdevn —null device has always detected exactly
one card, so we’'ll simply call theull_advertise(function ourselves,
once.

Note thatio —net will call in to your null_advertise(function some
time later as well. This happens whenever satteerdriver is

mounted above yours, so that it too can be informed of your driver’s
capabilities. This ties in with our discussion (above) about the
dynamic nature of the loading of the modules.

Here’s the code for ounull_advertise(function (the numbers in the
comments correspond to the notes just after the code sample):

/I macros for function pointers

#define ion _alloc null —ion => alloc
#define ion _alloc _npkt null _ion —> alloc _up_-npkt
#define ion _add _done null _ion => reg —tx _done
#define ion _free null _ion => free
#define ion _rx _packets null _ion —> tx _up
#define ion _tx _complete null _ion => tx _done
#define MTUSIZE 1514
int
null _advertise (int reg _hdl, void *func _hdl)
{

npkt _t *npkt;

net _buf _t *nb;

net _iov _t *jov;

io _net _msg_dl _advert _t *ap;

/I 1) allocate a packet; we’ll use this for communications with io -net
if ((npkt = ion _alloc _npkt (sizeof (*nb) + sizeof (*iov), (void **) &nb)) == NULL) {
return (0);

}

/I 2) allocate room for the advertisement message
if ((ap = ion _alloc (sizeof (*ap), 0)) == NULL) {
ion _free (npkt);

Chapter 9 e Network Drivers

Writing your own driver

return (0);

}

/I 3) set up the packet into the queue
TAILQ _INSERT-HEAD (&npkt -> buffers, nb, ptrs);

iov = (net _iov _t *) (nb + 1);

nb —> niov = 1;

nb —> net _iov = iov;

iov -> iov _base = ap;

iov —> iov _len = sizeof (*ap);

/I 4) generate the info into the advertisement message
memset (ap, 0x00, sizeof (*ap));

ap —> type = _IO _NET-MSGDL_ADVERT;

ap —> iflags = (IFF _SIMPLEX | IFF _BROADCAST | IFF_MULTICAST | IFF _RUNNING);
ap —> mtu_min = 0;

ap —> mtu_max = MTUSIZE;

ap -> mtu _preferred = MTUSIZE;

sprintf (ap => up_type, "en%d", null _lan);

strepy (ap => dl.sdl _data, ap —> up-_type);

ap —-> dl.sdl _len = sizeof (struct sockaddr _dly;

ap —> dl.sdl _family = AF _LINK;

ap —-> dl.sdl _index = null _lan;

ap —> dlsdl _type = IFT _ETHER;

ap —> dl.sdl _nlen = strlen (ap => dl.sdl _data); // not terminated

ap —-> dl.sdl _alen = 6;
memcpy (ap —> dl.sdl _data + ap —> dl.sdl _nlen, "\x12\x34\x56\x78\x9a\xbc", 6);

/I 5) bind the advertisement message to the packet; note the use of
I the _NPKT_MSG flag to indicate to the upper modules that this

I is a message intended for them, rather than a "regular" packet
npkt —> org _data = ap;
npkt —> flags |= —_NPKT_MSG;

npkt => iface = 0;
npkt —> framelen = sizeof (*ap);

if (ion _add_done (null _reg —hdl, npkt, NULL) == -1) {
ion _free (ap);
ion _free (npkt);

return (0);
}
/I 6) complete the transaction
ion _rx _packets (null _reg _hdl, npkt, 0, 0, null —cell, null _lan, 0);
ion _tx _complete (null _reg _hdl, npkt);
return (0);

In the code sample above, the following steps are taken: @@ @
MORE INFO, this is just an outline @@ @

1 Allocate a packet for the communication. The function
ion_alloc_npkt()is a macro expansion for treloc_up_npkt()

Chapter 9 o Network Drivers 129

Writing your own driver

130

function (defined below), which is responsible for allocating an
upgoing packet. Here we've created the initial packet that we're
going to send to the upper layés (-net itself).

2 Allocate room for the advertisement message. The function
ion_alloc() is a macro expansion for tladioc() function
(defined below) and is used to create room for @@ @.

3 Set up the packet into the queue. Here we bind the pointers to
the buffers into theet _iov _t data type that we allocated
above.

4 Generate the info into the advertisement message. We create
the advertisement message ourselves here by filling the various
members of thap structure (of type
io _net _msg_dl _advert _t). @@@ EXPL flags, like
_IO_NET_MSG_DL_ADVERT, IFF_* family.

5 Bind the advertisement message to the packet. Finally, we
perform pointer manipulations to attach the data (the
advertisement message) into the packet.

6 Complete the transaction. To complete the transaction, we call
ion_rx_packets()a macro that expands te up(), defined
below) which sends a packet to the layer above you. Then, we
callion_tx_complete()a macro that expands te_.done()
defined below) which indicates that the packet has been
consumed (i.e., we're now done with the packet). In our case,

this will @ @ @?do what?@ @ @

At this point any modules which are attached to you from above know
the characteristics of your driver.

The next two things to look at are how your driver receives data from
the higher levels (destined for transmission via the hardware) and how
it tells the higher levels that data has arrived (from the hardware).

Chapter 9 e Network Drivers

Writing your own driver

Receiving data In our sampledevn —null driver, recall that we created a thread to
and giving itto a perform the “receive data from hardware” function:
higher level
pthread _create (NULL, NULL, null _rx _thread, NULL);

Let’'s now look at this function:

void *

null _rx _thread (void *not _used)

{
Q@@ data; // what type should this be?
npkt _t *pkt;

while (1) {
/I 1) wait for hardware
sleep (1);
/I 2) pretend data has arrived

/I 3) allocate upward —headed packet
pkt = (*null _ion —> alloc _up_npkt) (sizeof (net _buf _t) + sizeof (net _iov _t) + MTUSIZE, &data);
/I set _NPKT-NQ.RES flag to ensure your tx _done called before tx —done returns

/I 4) fill data at MTU location in up packet

/I 5) call reg —tx —done()

/I 6) call tx —up()

/I 7) call null _ion => tx _done() (outcalls to your tx —done() function)

@@ @ Step-by-step work in progress...

1 Wait for hardware. In our simple driver, we simply called
sleep()to wait for one second, to simulate some form of delay
as might be encountered while waiting for data from a network.
Depending on the complexity of your actual hardware, the
sleep()call might just be replaced with something equally
simple, like aninterruptWait() This really depends on the
hardware architecture, however.

2 Pretend data has arrived. In our simple driver, we assume that
data is available at this point (i.e., we’'ll create some).
Obviously, this will be one of the key, hardware-specific
portions of your driver, as you'll have to get the data from the
hardware.

Chapter 9 o Network Drivers 131

Writing your own driver

Allocate upward-headed packet. At this step, we need to
allocate a packet that we can place the data into. Note that we
set the NPKT_NO_RESflag, even though it's less efficient (but
easier to understand). It means that beforaxtdone()that's
called in thenull_rx_thread()returns your outcall function
tx_done()has been called, implying that the packet has been
freed. This effectivelyoreventsyou from reserving the packet
memory and being able to reuse it. It's easier to understand
because the entire lifecycle of the packet is presented, rather
than having to discuss data buffer management issties
although we’ll get to those later.

Fill data at MTU location in up packet. At this point, we stuff
data into the up-going packet. Notice that we're just stuffing a
constant message for our simple example here.

Callreg tx_done()function. This binds & done()handler to

the packet. When the reference count goes to zero, the bound
function will be called, and it's up to it to release the storage for
the packet.

Call tx_up() function. This sends the packet up to the next
higher layer.

Call tx_done()function. This does what?@@ @ I’'m guessing:
indicates tdo —net that the packet can be freed, and that it
(io —net) can call the chain aix_done(} that are bound to the
packet to free it?

Transmitting data @@@ TODO need more

to the hardware

When a higher level sends data to a lower level for processing, one of
the “tricky” things to watch out for is the fact that the data may be
presented as a number of buffers (rather than just one single buffer as
it is in the up-going direction). This is because of the way that the
higher levels prepend and append encapsulation data onto the packet.

132 Chapter 9 e Network Drivers

The details

The detalls

Now that we've seen an outline of a sample driver, we’ll take a look in
detail at the definitions for the functions that we used.

Binding your You must include the filesys/io -net.h> which contains
driver to i0 —net structures that you'll use to bind your driverito—net .

Binding of the driver is performed by —net DLL-loading your
driver, and looking for a specific symbab_netdll_entry. This
symbol is of typdo _net _dll _entry _t, and contains the following

members:

typedef struct —io —net _dll _entry {
int nfuncs
int (* init) (void *dll _hdl, dispatch _t *dpp, i0 _net _self _t *ion, char *options)
int (* shutdown (void *dll —hdl);

} io _net _dll _entry _g;

The members are defined as follows:

nfuncs The number of functions in the
io _net _dll _entry _t structure. In the structure
above, this would be the constas there are two
functions,init() andshutdown()

init A pointer to your initialization function. This will be
the first function called bio —net in your driver. You
should initialize your driver in this function. This
function is mandatory.

shutdown An (optional) pointer to your “master” shutdown
function. This is called just befoiie —net finally
closes your driver DLL. A particular DLL can register
multiple times as multiple different things (e.g., as an
up-producer and as a convertor). When a particular
registration instance (a “registrant”) is shut down, its
shutdownl1(andshutdown2(Functions (from the

Chapter 9 o Network Drivers 133

The details

Arguments

io _net _registrant _t structure’s

io _net _registrant _funcs _t function pointer
array) are called. Wheall of the DLL's registrants are
closed, thenhis shutdown(junction is called. If you
don’t wish to supply this function, placeNULL in this
member.

Theinit() function that you supply is then responsible for the
following:

e processing of sub-options passed indp&onsargument.

e detection and configuration of all cards (one or more, can be
“auto-detect” or can be based on the sub-options irfit®ns
argument).

e binding toio -net .

Theinit() function that you supply gets passed the following
arguments:

void * dll_hdl

An internal handle used by -net — you’ll need to hold onto
this handle for future calls into tHe —net framework.

dispatch _t * dpp
Dispatch handle.

io _net _self _t * ion
A big honkin’ structure, see below.

char * options
Command line sub-options related to your driver.

134 Chapter 9 e Network Drivers

The details

The io _net _self _t structure

Theio _net _self _t pointer points to a structure that contains

io —net 's functions that are accessible to you. You should cache this
pointer (passed to you in yoinit() function) so that you have access
to those functions later.

The structure is defined as follows (the arguments are shown in the
individual function descriptions below):

typedef struct —io _net _self {
u_int nfuncs
void *(* alloc) (...);

npkt _t *(* alloc_down_npk) (...);
npkt _t *(* alloc_up—npk) (...);
int * free (...);

paddr _t (* mphy3 (...);

int * reg (...)

int (* dereg (...);

int * txwup) (...);

int (* tx—down (...);

int (* tx—don@ (...);

int (* reg—tx_dong (...);

int (* reg-bytepat) (...);

int (* dereg-byte_paf) (...);
int (* devct) (...);

int (* tx—up-start) (...);

int (* memcpyfrom_npkf (...);
int (* raw—devct) (...);

} io _net _self _t;

Thenfuncsmember indicates how many functions are provided in the
table; it’s filled automatically byo —net .

void *(* alloc) (size _t size int flagy

Allocates a buffer that's safe to pass to any other module.

npkt _t *(* alloc_down_npkp (int registranthdl, size _t size
void ** datg)

Allocates ampkt _t and initializes its internal members to values
required for downward travel. The required numbetxoflonearray

Chapter 9 o Network Drivers 135

The details

elements (slots) immediately implicitly following thekt _t is
allocated in order to successfully reach any endpoint registrant this
driver is currently connected to.

npkt _t *(* alloc_up_npk) (size _t size void ** data
Allocates ampkt _t and initializes its internal members to values
required for upward travel, as follows:

numcomplete the valuel to indicate that it has room for one
tx_done(the originator’s) array element
immediately implicitly following the structure.

reg.complete the value0 to indicate the single slot has not been
used yet.

ref_cnt the valuel as the reference count (only in use by
one module at this point).

flags the bits_NPKT_UP and _NPKT_EXCLUSIVE are on,
indicating it's an upward-bound packet and your
module has exclusive access to it.

buffers initialized to an emptyAILQ queue structure.

On successful completiodatapoints to a buffer osizebytes in
length.

int (* free (void * ptr)

Frees a buffer allocated by any of the above 3 methaliis(),
alloc_down.npkt() andalloc_up_npkt().

paddr _t (* mphy3 (void * ptr)

Quick lookup of physical address of buffer allocated by any of the
above 3 methodsa(loc(), alloc_downnpkt() andalloc_up_npkt().

136 Chapter 9 e Network Drivers

The details

int (* reg) (void * dll_hdl, io _net _registrant _t
*registrant int * reg_hdlp, uintl6 _t * cell, uintl6 _t
* endpoin)

This call binds your driver tio —net . Thedll_hdlis what you got
called with in yourinit() function (from theio _net _dll _entry _t
data type that you provided). Thegistrantparameter is a pointer to
anio _net _registrant _t, which is defined below. The registrant
describes what they are registering as. On sucoagsdipis filled,

and should be used as tregjistranthdl parameter to subsequent calls
intoio _net , with thecell andendpointindicating the registrant’s
place to other registrants (seeup(), below).

int (* dereg (int registrant_hdl)

Deregister fromio -net . Note that if a DLL has registered multiple
times, its main DLL shutdown function (above) is not called until
after all registrants have deregistered.

int (* tx_up) (int registrant_hdl, npkt _t * npkt int off,
int framlen_suh uintlé _t cell, uintl6 _t endpoint
uintl6 _t iface

Send a packet to the layer above you. The paranoéténdicates to

the layer above at which offset into the packet the type your layer
presents starts. THeEmelensubparameter indicates how many bytes
on the end of the packet are not your type. These two parameters
allow a packet to be “decapsulated” without the need to perform a
copy operation. Finallyell, endpoint andifaceindicate to the layers
above who this packet came from. Tewll andendpointare supplied
byio —net when you registered above. Tliaceis for internal use

and allows a single registrant to present multiple interfaces of the
same type to upper modules. It should staftand increase
sequentially. In the case of a driver talking to hardware (a simple up
producer with no modules below it), it's actually more flexible to
register multiple times if multiple interfaces are present (once for each
interface). In this case, thace parameter is alway&

Chapter 9 o Network Drivers 137

The details

int (* tx_down (int registrant_hdl, npkt _t * npkd

Send a packet down to the layer below you. The destination that
you're trying to reach is stored in thoell, endpoint andiface
members ofipkt

int (* tx—dong@ (int registranthdl, npkt _t * npkd

For downward-headed packets, this function is called once by the
module that consumes the packet. This causes the chairdohe(s
stored innpktto be called in LIFO order. For upward-headed packets,
this function is called by each module (including the originator) when
finished with the packet. The singbe done()stored in the packet is
called when theef_cnt member goes to zero.

int (* reg_tx_dong (int registrant_hdl, npkt _t * npkt void
* done_hdl)

This function is used to storeta done()callback in the packetpkt

It's called once by the originator for upward-headed packets, and
called by every module that adds to tgktbuffer chain for
downward-headed packets. You must call this function rather than
stuffing the value directly becauge-net keeps track of how many
tx_done(}k a module has outstanding (used for unmounting the
module).

int (* reg_byte_pat) (int registrant_hdl, unsigned off,
unsigned len, unsigned char * pat, unsigned flag9

Before a module will receive any upward-headed packets, it must
register withio —net to indicate what subtype it wants. This is in
place to allow packet filtering, so that the module isn’t getting packets
that it will not be dealing with. The module already specified its
bottom type when it registered (e.gn" , this would specify

Ethernet subtype®x0800and0x0806(for arp), or the IP protocol type
PROT.QNET for gnet). If a module wants to gedll subtypes, it

would use the constanBYTE_PAT _ALL in theflagsparameter.

138 Chapter 9 e Network Drivers

The details

Important! Your modulenustregister forsomekind of byte pattern,
otherwise it willnot get any up-headed packets.

int (* dereg-byte_pat) (int registrant_hdl, unsigned off,
unsigned len, unsigned char * pat, unsigned flag9

Deregisters a byte pattern fram-net .

int (* devct) (int registrant_hdl, int dcmd void * datg
size _t size int * ret)

Send adevctl()toio —net .

npkt _t *(* tx_up_start) (int reg—hdl, nptk _t * npkt int
off, int framelen_suh uintl6 _t cell, uintl6 _t endpoint
uintl6 _t iface void * done_hdl)

A utility function for use by originators of up-headed packets. Unlike
the rest of the functions provided lay -net , thenpktparameter can
be a linked list of packets rather than a single entity. It efficiently
combineso —net 's reg tx_done() tx_up() andtx_done()functions (3
common operations for originators of up-packets) as follows:

reg _tx _done (reg —hdl, npkt, done —hdl);

tx —up (reg -hdl, npkt, off, framelen —sub, cell, endpoint, iface);
tx —done (reg -hdl, nptk);

This processing is done for alpkss in the linked list. This function
returns a linked list ohpkis that had errors, MULL if all succeeded.

int (* memcpyfrom_npk) (const iov _t * dst int dparts
int doff, const npkt _t * snpkf{ int soff, int smaxlen)

Utility function that's generally useful for copying data from packets.
Similar tomemcpyv() The return value is the number of bytes copied.

Chapter 9 o Network Drivers 139

The details

The
i0 _net _registrant -t
structure

140

—context
-t * attr)

int (* raw_devct) (resmgr
*m, io —net _iofunc _attr

-t * ctp, io _devctl _t

The idea here is to allow someone to write a classfTER_ ABOVE
which sits above, say, all Ethernet registrants and is passepei(s
so they could then handle a#dad()s, write()s, etc., to that device. The
only I/O message thad —net is concerned about is the message
corresponding to thdevctl()function call, so if they got devctl()

they didn’t handle the default would be to call this function.

Here’s the definition for th® _net _registrant
member ofo _net _self _t, above):

_t structure (a

typedef struct —io _net _registrant {

uint32 _t flags
char * name
char * top_type
char * bot_type
void * func_hdl;
io _net _registrant _funcs _t * funcs
int ndependencies
} io _net _registrant _t;

This structure is assumed to be followed by a variable number of
io _net _dependency _t elements, as specified by the
ndependenciemember:

typedef struct —io _net _dependency {
char * dep
uint32 _t flags

} io _net _dependency _t;

The members (for both structures) are defined as follows:

flags(fromio _net _registrant _t)
Indicates the type of driver being registered, see below.

name A pointer to the ASCII name of the driver, for example,

"devn -speedo" .

Chapter 9 e Network Drivers

The details

top_type A pointer to the ASCII name of the top type binding, for
example,'en" .

bot type A pointer to the ASCII name of the bottom type
binding, for exampleip"

func_hdl A handle that you define, which will get passed to your
functions when they get called. It's a convenient way of
binding a data structure to this particular registration
instance (because your module can register multiple
times as different things).

funcs A pointer to a function table, see below.

ndependencies

The number of elements in the
io _net _dependency _t table that's assumed to
implicitly follow the io _net _registrant ~ _t table.

dep Q@@

flags(fromio _net _dependency -_t)

Q@@

Theflagsmember ofo _net _registrant ~ _t is a bit field, selected
from the following:

REG.FILTER.ABOVE

A filter that sits above an up producer and below the bottom end
of a convertor.

_REGFILTER.BELOW

A filter that sits below a down producer and above the top end
of a convertor.

_REG.CONVERTOR
A convertor.

Chapter 9 o Network Drivers 141

The details

REG.PRODUCERUP
A producer in the “up” direction.

_REG_PRODUCERDOWN
A producer in the “down” direction.

Thefuncsmember ofio _net _registrant _t is a pointer to a
function table that you supply, as per the following (function
parameters given below):

typedef struct _io _net _registrant _funcs {
int nfuncs
int * rxzup) (...);
int (* rx—down (...);
int (* tx-dong (...);
int (* shutdown}) (...);
int (* shutdown® (...);
int (* dl_adver) (...);
int (* devct) (...);
int (* flush (...);
int (* raw—open (...);
} io _net _registrant _funcs _t;

The members are defined as follows:

int nfuncs The number of function pointers in the structure.
For the structure as given above, this should be the
constan®.

int (* rx—up) (npkt _t * npkt void * func_hdl, int off, int

framlen_sub uintl6 _t cell, uintl6 _t endpoint uintlé _t

iface);
This function is called when your module receives
an up-headed packet from a module below you. The
cell, endpoint andiface parameters describe which
module the packet is coming from.

int (* rx—down (npkt _t * npkt void * func_hdl);
This function is called when your module receives a
down-headed packet from a module above you. The

142 Chapter 9 o Network Drivers

The details

cell, endpoint andiface members of thapkt
structure describe the destination of the packet, and
the buffersmember contains the packet data.

int (* tx—done (npkt _t * npkt void * done_hdl, void

* func_hdl);

Called when a packet that you're responsible for
has its reference count go to zero; effectively
indicating that it has been consumed and may now
be “recycled” (or disposed of).

int (* shutdown} (int registrant_hdl, void * func_hdl);

This is the first “shutdown” function that gets called
when your driver is asked to shutdown. You can
prevent the driver from being shut down by
returning an error indication (for exampEBUSY

to indicate that there are active transmissions
occuring; it would be up to the higher level to retry
later) or anEOK to allow the shutdown to occur.

The implication here is that oreannotforce a
shutdown of a driver that returns an error indication.
If you proceed with the shutdown, it’s your last
chance to flush out buffers using the thread that
calledshutdown1()

int (* shutdown? (int registrant_hdl, void * func_hdl);

At this point, everything ino —net has detached
from your driver, and younustshutdown. This is
the call that you'd use to kill off any of your worker
threads, for example. Generally speaking,
shutdown2(Hoes most of the “work” associated
with shutting down the driver.

int (* dl_adver) (int registrant_hdl, void * func_hdl);

Called byio -net to cause your driver to advertise
itself. Generally, this will be called whenever a new
higher-level driver starts up, as it will need to be
made aware of the capabilities of all drivers at

Chapter 9 o Network Drivers 143

The details

levels below it, so that it can determine what
capabilities exist underneath it.

int (* devct) (void * hdl, int dcmd void * data size _t
size int * ret);
This is the callin to your driver to performaevctl()
function. This would get invoked when someone
does aevctl()on your driver’'s
/deviio —net/ driver pathname. Currently, only
the “nic info” devctl()is defined, which is used to
fetch statistics from a driver. You don'’t have to
support adevctl()handler. @@ @ to document
nicinfo structure and devctl @@ @

int (* flush (int registrant_hdl, void * func_hdl);
@@@

int (* raw_open (resmgr _context _t * ctp, io _open _t

*msg io _net _iofunc _attr _t * attr, void * extra);

@@@

Command line Theinit() function that you supply in youo_netdll_entrystructure
processing gets passed the suboptions string fiomnet . You can use the
getsubopt(function to parse command line arguments passed to your
driver.

Detection and Once you have processed any (optional) command line parameters for

configuration of cards your driver, you should then detect any and all cards that your driver

144

is responsible for. (Depending on your hardware, the PCI calls may
come in handy — see the PCI chapter as well as the library
reference.) Note that, depending on your implementation, you may
wish to detect only cards that have been explicitly given on the
command line, or you may wish to detect all cards, or only one
specific card — it's up to you as the driver writer. The “standard”
behaviour, though, in the absence of any command line options to the
contrary, is to detect and install all cards, but if command line options
are specified indicating a particular card, then only that card should be
detected and installed. Generic command line options {kkeose |,

for example) should have no effect on the card-scanning functionality.

Chapter 9 e Network Drivers

The details

Binding to i0 —net

Once you've detected your card(s), you'll need to perform whatever
setup is appropriate at the hardware level and the software level (e.g.,
initialization of control ports, hardware interrupt allocation and
binding, creation of data structures, etc.).

Once the device is configured, you'll want to bind it into the-net
hierarchy. This is done via theg() function, from the table of
function pointers that is passed in the

io _net _registrant _funcs _t (described above).

Once bound in, you'll receive callouts froim —net into the

functions that you specified. Your hardware will most likely generate
interrupts (or inform you in some other way that data has arrived);
you'll then use the callins tm —net to inform it that data has arrived
(after suitable processing on your end).

@@ @ Is something like this at all useful? It's a work-in-progress that
| used to get some initial understanding. We could probably use this
for a “big picture” with suitable massaging. ..

io _net _registrant —funcs _t speedo _funcs = {
8,
NULL, ¥ rx _—up - I'm a driver */
&speedo _send _packets, I* rx —down() */
&speedo _receive _complete, /* tx _done() */
&speedo _shutdownl, /* shutdown() */
&speedo _shutdown2, I* shutdown() */
&speedo _advertise, /* advertise _ifaces ??? */
&speedo _devctl, /* devctl() */
&speedo _flush, [* flush() */
NULL /* RAW open() ??? - nraw */
h
io _net _registrant _t speedo _entry = {
-REG.PRODUCERJP, I* flags */
"devn —speedo", /* name */
“en", /* top _type */
NULL, /* bot _type */
NULL, /¥ rx _down_hdl - load with Nic on each register */
&speedo _funcs, /* funcs */
0 /* dependencies */

h

in _net _dll _entry _t:
init = speedo _init;
speedo _init() {
speedo _detect() {
nic _create _device();
speedo _scan() {

Chapter 9 o Network Drivers 145

The details

speedo _register _device(){
speedo —_config() {
}
speedo _initialize() {
}
#define ion _register ext —>ion —>reg
ion _register(dll _hdl, &speedo _entry);
}
speedo _advertise(){

}

The npkt _t data Thenpkt _t structure is defined as follows:

type typedef struct _npkt {
TAILQ _HEAD(, —net _buf) buffers
npkt _t * next
void * jo_netQ
void * org—datg
uint32 _t flags
uint32 _t framelen
uint32 _t tot_iov;
uint32 _t io_netl,
uint32 _t ref_cnt,
uintlé _t num_complete
uintle _t reg—complete
uintlé _t cell;
uintlé _t endpoint
uintlé _t iface
uintlé _t skip
union {

void * o

unsigned char ¢ [16];
} inter _module;

/I this field follows the structure implicitly:
npkt _done _t c [];
} npkt _t;

The fields are defined as:

buffers A queue of buffers, managed using thelLQ*()
macros fronksys/queue.h>

next Pointer to nextpkt _t .

146 Chapter 9 e Network Drivers

The details

io_netQ io_net], ref_cnt

org_data

flags
framelen
tot.iov

numcomplete

reg.complete

cell
endpoint
iface

skip

Internal toio —net , do not examine or modify.

For the exclusive use of the originator of this
npkt _t . No one else should touch this member.

Status of buffer, see below.
Total length of the entire packet.
Total number ofov s in the packet.

@@ @number complete? Indicates number of
elements in thepkt _done _t array which
implicitly immediately follows this structure?

Required number aipkt _done _t elements this
downward-headed packet required before it
reached its final destination. Only for information
purposes (read-only) in originatot’s done()
function if originator isn’t usindo —net ’'s
alloc_down pkt() function.

Cellnpkt _t is headed to/from.
Endpoint within cell.
Interface within endpoint.

@@ @seanb sez that this is reserved for the
future. Here’s a work in progress: For use by
_REGFILTER_BELOW types of modules. The idea
is that they could receive a packet from above,
modify it somehow, stuff theireg_hdl in the skip
member, and returfiX_DOWN_AGAIN (from
<sysfio -net.h>) from theirrx_down()function.
The down producer would s@&x_DOWN_AGAIN
and resend it down (after re-checksuming,
re-routing, etc.), but this time, the
_REGFILTER_BELOW would be skipped by

Chapter 9 o Network Drivers 147

The details

148

io —net . This hasn't really been tried yet. The
code is inio —net , but no filters have been written
yet and the stacks don’t check for
TX_DOWN_AGAIN yet...

inter_module.pinter_-module.c

c (implied)

A data area that can be used by any module to pass
information to the module above or below it.

(array, implicitly immediately after this structure)
On a downward-headed transmission, this array is
numcompleteelements long, whereas on an
upward-headed transmission, it's alwdyslement
long. Note that this array isn’t part of the structure
proper, but implicitly immediately follows the
structure.

And theflagsparameter is selected from the following:

NPKT_EXCLUSIVE

NPKT_NO_RES

_NPKT_UP

NPKT_MSG

You have exclusive access to this upward bound
npkt _t.

Up producer wants its buffer back right away.

npkt _t is headed in the up direction; down if this
bit is not set.

Indicates that this message is intended for a different
layer, rather than actually containing packet data.

NPKT_-MSG_DYING

Chapter 9 e Network Drivers

When a driver is unmounteéh -net synthesizes a
_NPKT_MSG| NPKT_MSG_DYING npktand sends it
up as though it came from the driver. It has no data
in it. It means thigell, endpoint and allifaces are
gone.

The details

NPKT_BCAST @@ @Broadcast?

_NPKT_MCAST

@ @ @Multicast?
_NPKT_INTERNAL

Internal toio —net .

Chapter 9 e Network Drivers 149

Chapter 10

PCI Drivers

In this chapter. ..
PCI drivers

Chapter 10 e PCI Drivers 151

PCI drivers

PCI drivers

This chapter describes the PCI drivers in detail.

Chapter 10 o PCI Drivers 153

Chapter 11

USB Drivers

In this chapter. ..

USB drivers
USB Driver Library reference
USB Skeleton Driver

Chapter 11 e USB Drivers 155

USB drivers

Overview

USB drivers

REVISION 00 06 12 09 30

This chapter describes:

e the architecture of the USB stack and driver library,
e the functions available to writers of class drivers,
e the data structures used by the stack, and

e asample “skeleton” driver which can be used as the basis for your
own class driver.

USB (Universal Serial Bus) is a hardware and protocol specification
for the interconnection of various devices to a host controller. We
supply a USB stack that implements the protocol, and allows
user-written class drivers to communicate with these devices. We also
supply a USBD (USB Driver) library that class drivers use to
communicate with the USB stack. (Note that the class driver can be
considered to be a “client” of the USB stack.)

The stack is implemented as a stand-alone process that registers the
pathname ofdev/usb (by default). The stack (currently) contains
the hub class driver within it.

Data buffers are implemented via a shared memory interface that’s
managed by the USB stack and the client library. That is to say, the
client library provides functions to allocate data buffers in the shared
memory region, and the stack manages these data buffers and gives
the client library access to them. This means that all data transfers
must use the provided buffers. The one limitation that this imposes is
that a class drivemustbe on the same node as the USB stack. The
clientsof the class driver, howeveranbe network distributed. The
advantage of this approach is that no additional memory copy occurs
between the time that the data is received by the USB stack and the
time that it's delivered to the class driver (and vice versa).

Chapter 11 e USB Drivers 157

USB Driver Library reference

158

@@ @ talk about USB enumerators here... Here's a random,
unverified paragraph for your amusement/discussion (fkojn

A USB enumerator is supplied with Neutrino. The enumerator
attaches to the USB stack, and waits for device insertions. When a
device insertion is detected, the enumerator looks in the configuration
manager’s database to see which class driver it should start. The
driver is then started, and provides the appropriate services for that
class of device — for example, a USB Ethernet class driver would
register withio —net and bring the interface up. For small,
deeply-embedded systems, the enumerator is not required; the class
drivers can be started individually, and they’ll wait around for their
particular devices to be detected by the stack. After that, they’ll
provide the appropriate services for that class of device, just as if
they'd been started by the enumerator. When a device is removed, the
enumerator will shut down the class driver.

USB Driver Library reference

This section describes the USBD API calls available and the data
structures that are commonly used. Generally, a class driver will
perform the following operations (see the “USB Skeleton Driver,”
below, for implementation details):

1 connect to the USB stack (via thisbdconnect(function), and
provide two callbacks; one for insertion and one for removal.

2 in the insertion callback:
2a connectto the USB device (via thisbdattach()

function),

2b select the configuratiougbdselectconfig() and
interface (isbdselectinterface(), and

2c set up communications pipes to the appropriate endpoint
(usbdopenpipe().

Chapter 11 ¢ USB Drivers

USB Driver Library reference

Functions by
category

in the removal callback, detach from the USB device (via the

usbddetach()function)

all data communications (e.g., reading and writing data,
sending and receiving control information) are set up via the
usbdsetup*() functions and initiated via thesbdio() function
(with completion callbacks if required).

Note that the term “pipe” is a USB-specific term, and hathingto
do with standard POSIX “pipes” (as used, for example, in the
command linds | more). In USB terminology, a “pipe” is simply
a handle; something that identifies a connection to an endpoint.

The following function categories are provided:

e Connection

usbdconnect()
usbddisconnect()
usbdattach()
usbddetach()

e Memory management

usbdalloc()
usbdfree()
usbdalloc_dev()
usbdfree dev()
usbdalloc_urb()
usbdfree.urb()

e Data transfer

usbdsetupbulk()
usbdsetupfeature()

Chapter 11 ¢ USB Drivers 159

USB Driver Library reference

- usbdsetupintr()

- usbhdsetupisoch()

- ushdsetupvendor()
- ushbdio()

e Pipe management
- usbdopenpipe()
- usbdresetpipe()
- usbdabort()
- usbdclosepipe()
e Configuration / interface management
- ushdselectconfig()

- usbdselectinterface()

e Miscellaneous (@@ @ should these be subdivided or moved?)

- usbdgetdesc()
- usbdhcd.info()
- usbdstatus()
Alphabetical This section contains the detailed function and structure definition
listing of functions descriptions, presented alphabetically.

and structures
Functions The following functions are available to class drivers:

usbd _abort (@@@TBD@@@)

This routine aborts all requests on a pipe. This function can be used
during an error condition (for example, to abort a pending operation),
or during normal operation (for example, to halt an isochronous
transfer).

160 Chapter 11 e USB Drivers

USB Driver Library reference

void *usbd _alloc (int flags size _t siz@

Allocates a memory area that can then be used for message transfer.
You mustuse the memory area allocated by this function, because it's
allocated in shared memory (shared between the class driver, via its
library, and the USB stack).

To free the memory, usesbdfree() below.

usbd _device _t *ushd _alloc _dev (size _t * extsizg
@@ @ Does stuff, eh?

To free the memory, usesbdfree dev()below.

urb _t *ushd _alloc _urb (int flags size _t extra

Allocates an URB for subsequent URB-based operations extra
parameter indicates how much extra data area (in bytes) should be
allocated immediately after the URB. This data area is for your own
use and isn’'t used by the stack in any way. @@ @ need a function to
get at it, as an URB is (supposedly) an opaque data type @@ @

To free the memory, usesbdfree urb() below.

usbhd _attach (@@@TBD@@ @)

This routine allows a class driver to attach to a specific device. The
flagsargument can be any one of the following:

e USBD.ATTACH_RDWR

USBD_ATTACH_RDONLY

USBD_ATTACH_EXCL

USBD_ATTACH_SHARE

Chapter 11 ¢ USB Drivers 161

USB Driver Library reference

162

@@ @ Prolly meant to sajROWR or RDONLY) and (optionally)
(EXCL or SHARE), right? @ @@ What aboWVRONLY (for a printer,
for example)?

Useusbddetach()to detach from the device.

You’d generally call this function in your insertion callback (as passed
to theusbdconnect(¥unction) to attach to the newly-inserted device.

ushd _close _pipe (ushd _pipe _t * pipe

This function closes a pipe (passed via piige argument) previously
opened by theisbdopenpipe() function.

usbd _connect (@@@TBD@@ @)

This function creates a connection to the USB stack. It provides
notification of insertion / removal of devices through the

usbd _entry _t * entryparameter’s callouts. Notification can be
limited to specific devices by using tletass sclasgsubclass),

protocol did (device ID), andvid (vendor ID) parameters. Any

number of those parameters can be the wildcard constant
USBD_.CONNECT.WILDCARD. Thepathparameter is used to specify
which USB stack to connect to. The default (recommended) stack can
be specified by using the manifest constaBBD_DFLT_STACK.

Important! This function creates a thread on your behalf, which is
used by the library to monitor the USB stack for device insertion or
removal. The implication is that your insertion and removal callback
functions are called by this new thread; therefore you'll have to

ensure that any common resources used between that thread and any
other thread(s) in your class driver are properly protected (e.g., via a
mutex).

Useusbddisconnect(Jo destroy the connection after you're done
with it.

Chapter 11 ¢ USB Drivers

USB Driver Library reference

usbd _detach (@@ @TBD@@@)

This routine releases the ownership of the device back to the stack.
The device must have been attached usistgd attach()

usbd _disconnect (@@ @TBD@@@)

This function disconnects from the USB stack. To&nection
parameter is the one previously obtained fromubled connect()
function.

int usbd _free (void * p)

Frees memory allocated mgbdalloc() above.

int usbd _free _dev (ushd _device _t * dey)

Frees memory allocated mgbdalloc_dev()above.

int usbd _free _urb (urb _t * urb)

Frees memory allocated mgbdalloc_urb() above.

int usbd _get _desc (usbd _device _hdlit _t * dhdl, _uint32
type _uint32 index _uintl6é langid, usbd _addr _t addr,
int len)

Retrieves descriptors defined by tigpeparameter; one of the
following:

USB_.DESC CONFIGURATION

USB_.DESCDEVICE

USB_.DESCENDPOINT

USB_DESCINTERFACE

Chapter 11 ¢ USB Drivers 163

USB Driver Library reference

164

e USB.DESCSTRING

The descriptor is returned into the data area pointed tadoly and is
limited to len bytes. In cases where more than one descriptor can be
returned for a given request, th@lexargument is used to indicate
which one is to be returned. (Use the value indicate the first or

only one.) The following descriptor type definitions are available
(conforming to the layout mandated by the USB specification) in the
include-file<@@ @sys???/usbh.h> and correspond to the descriptor
typemanifests (above):

e ush _configuration —_descriptor _t

e usb _device _descriptor _t

usb _endpoint _descriptor _t
e usb _interface _descriptor _t

e usb _string _descriptor _t

The data structure definitions for the individual descriptor types are
detailed below, under “Structures.”

usbd _hcd _info (@@@TBD@ @ @)
@@ @ Does stuff, en? HCD == Host Controller Driver

Refer to the structure definition section, undsivd _hcd _info _t
for information on the returned data.

usbhd _io (@@@TBD@Q@@)

This routine submits a previously-setup URB (from one of the
functionsusbdsetupbulk(), usbdsetupfeature() usbdsetupintr(),
usbdsetupisoch() or usbdsetupvendor() below) to the USB stack.

This function is the one thatctuallymakes the data transfer happen;
the setup functions simply set up the URB for the data transfer.

Chapter 11 ¢ USB Drivers

USB Driver Library reference

usbd _open _pipe (@@@TBD@@®@)

This function initializes the pipe described by the

usb _endpoint _descriptor _t * descparameter. The pipe handle
is returned through the pointer pipe The pipe may be closed via
usbdclosepipe().

usbd _reset _pipe (usbd _pipe _t * pipe

Clears a stall condition on an endpoint identified by the pipe.

usbd _select _config (@@ @TBD@Q@@)
@@ @ Does stuff, en?

usbd _select _interface (@@ @TBD@@ @)
@@ @ Does stuff, en?

usbd _setup _bulk (@@@TBD@@@)

Sets up an URB for a bulk transfer operation, which can be triggered
by a subsequent call tssbdio(). @ @@ describe parameters

usbd _setup _feature (@@ @TBD@@ @)

Sets up an URB for a feature transfer operation, which can be
triggered by a subsequent callusbdio(). @ @@ describe
parameters

ushd _setup _intr (@@@TBD@@ @)

Sets up an URB for an interrupt transfer operation, which can be
triggered by a subsequent callusbdio(). @@ @ describe
parameters

Chapter 11 ¢ USB Drivers 165

USB Driver Library reference

usbhd _setup _isoch (@@ @TBD@@ @)

Sets up an URB for an isochronous transfer operation, which can be
triggered by a subsequent callusbdio(). @ @@ describe
parameters

ushd _setup _vendor (@@@TBD@@@)

Sets up an URB for a vendor transfer operation, which can be
triggered by a subsequent callusbdio(). @ @@ describe
parameters

ushd _status (@@ @TBD@@ @)

Returns status information on an URB.

Structures The following structure definitions are used in conjunction with the
functions listed above:

urb _t

The structure is formally defined as:
typedef struct —urb {
/I @@@ is this guy opaque or not?

Il @@@ if not, where do | find it?
}ourb _t;

The members are defined as follows:

@@@member
@ @ @definition

166 Chapter 11 e USB Drivers

USB Driver Library reference

usb _configuration —_descriptor _t
The structure is formally defined as:

typedef struct —usb _configuration —descriptor {
—uint8 bLength
—uint8 bDescriptorType
—uintl6é wTotalLength
—uint8 bNuminterfaces
—uint8 bConfigurationValug
—_uint8 iConfiguration
—uint8 bmAttributes
—uint8 MaxPower
} usb _configuration —descriptor _t;

The members are defined as follows:

bLength Size of this structure.

bDescriptorType
Contains the valu@@@

wTotalLength Q@@?
bNuminterfaces The number of interfaces present.

bConfigurationValue

@@@?
iConfiguration @@@?
bmAttributes Q@@?
MaxPower @@ @maximum power in @@ @ (units, mA?)

usb _device _descriptor _t

The structure is formally defined as:

Chapter 11 e USB Drivers 167

USB Driver Library reference

typedef struct —usb _device _descriptor {
—uint8 bLength
—uint8 bDescriptorType
—uintl6 bcdUSB
—uint8 bDeviceClass
—uint8 bDeviceSubClass
—uint8 bDeviceProtocql
—uint8 bMaxPacketSize0
—uintlé idvendor
—uintl6 idProduct
—uintl6 bcdDevice

_uint8 iManufacturer
_uint8 iProduct
_uint8 iSerialNumbey

—uint8 bNumConfigurations
} usb _device _descriptor _t;

The members are defined as follows:

bLength Size of this structure.
bDescriptorType

Contains the valu@ @ @
bcdUSB @@@?

bDeviceClass The device class.

bDeviceSubClass
The device subclass.

bDeviceProtocol

@@@?

bMaxPacketSize0
Maximum packet size for endpoint O (the control
endpoint).

idVendor Vendor ID.

168 Chapter 11 ¢ USB Drivers

USB Driver Library reference

idProduct Product ID.
bcdDevice Q@@?
iManufacturer @Q@@7?

iProduct @@@?
iSerialNumber @@ @?

bNumConfigurations
@@@?

usb _endpoint _descriptor _t

The structure is formally defined as:

typedef struct —usb _endpoint _descriptor {
—uint8 bLength
—uint8 bDescriptorType
—uint8 bEndpointAddress
—uint8 bmAttributes
—uintl6 wMaxPacketSize
—uint8 bintervat
} usb _endpoint _descriptor _t;

The members are defined as follows:

bLength Size of this structure.

bDescriptorType

Contains one of (@@ @ at least):
USB.ISOCHRONOUSENDPOINT,
USB_BULK_ENDPOINT, or
USB.INTERRUPT.ENDPOINT.

bEndpointAddress
@@@?

Chapter 11 ¢ USB Drivers

169

USB Driver Library reference

170

bmAttributes QO@@?

wMaxPacketSize
Maximum packet size for this endpoint.

binterval @@ @ speed? transfer rate? in what units?

usb _interface _descriptor _t

The structure is formally defined as:

typedef struct —usb _interface _descriptor {
—uint8 bLength
—uint8 bDescriptorTypge
—uint8 binterfaceNumber
—uint8 bAlternateSetting
—uint8 bNumEndpoints
—uint8 binterfaceClass
—uint8 binterfaceSubClass
—uint8 binterfaceProtocal
—uint8 ilnterface

} usb _interface _descriptor _t;

The members are defined as follows:

bLength Size of this structure.

bDescriptorType

Contains the valu@@@
binterfaceNumber

@@@?
bAlternateSetting

@@@?
bNumEndpoints

The number of endpoints.

Chapter 11 ¢ USB Drivers

USB Driver Library reference

binterfaceClass
@@@?

binterfaceSubClass
@@@?

binterfaceProtocol
@@@?

ilnterface Q@@?

usb _string _descriptor _t

The structure is formally defined as:

typedef struct —usb _string _descriptor {
—uint8 bLength
—uint8 bDescriptorTypge
—uintl6 bString [1];

} usb _string _descriptor _t;

The members are defined as follows:

bLength Size of this structure.

bDescriptorType
Contains the valu@@@

bString The returned string, in 16 bits-per-character encoding as
per the specified language (@ @ @izit
UTF-something-or-other?@ @ @).

usbd _connection _t

Theusbd _connection _t structure is a member of bostruct
—usbd _device _ctrl andusbd _device _hdl _t, and represents

@@@

The structure is formally defined as:

Chapter 11 ¢ USB Drivers 171

USB Driver Library reference

172

typedef struct

—ushd _connection {

int fd;
TAILQ _HEAD (, —usbd _device _handle) dlist;
usbd _entry _t * entry,
—uint32 flags
—uint32 class
—uint32 sub_class
—uint32 protocot
—uint32 device.id;
—uint32 vendoc.id;
—uint32 rsvd [8];

} usbd _connection _t;

The members are defined as follows:

fd @@@?

dlist @@@?

entry Q@O@?

flags Q@@?

class Device class.
suhclass Device subclass.
protocol Q@@?
deviceid Device ID.
vendorid Vendor ID.

rsvd Reserved, do not examine or modify.
struct _ushd _device _ctrl

Thestruct _usbd _device _ctrl structure is used for @@ @

The structure

Chapter 11 ¢ USB Drivers

is formally defined as follows:

USB Driver Library reference

struct _usbd _device _ctrl {
TAILQ _HEAD (, -usbd _device) dlist;
usbd _connection _t * connection
usbd _entry _t * entry,

h

The members are defined as follows:

dlist @@@?
connection Q@@?
entry Q@@?

usbd _device _hdl _t

Theusbd _device _hdl _t structure is a member of
usbd _device _t and represents @@ @

The structure is formally defined as:

typedef struct —usbd _device _handle {

usbd _connection _t * uhdl
TAILQ _ENTRY (~usbd _device _handle) dlink;
—uint32 dev_path
—uint32 dev_addr,
—uint32 dev_cfg;
—uint32 dev_iface
TAILQ _HEAD (, —usbd _pipe) plist;
—uint32 rsvd [8];

} usbd _device _hdl _t;

The members are defined as follows:

uhdl Q@@?
dlink QO@?
devpath QO@?

Chapter 11 ¢ USB Drivers 173

USB Driver Library reference

devaddr Q@@?
devcfg QO@?
deviface Q@O@?
plist @@@?

rsvd Reserved, do not examine or modify.

usbhd _device _t
Theusbd _device _t structure is used for @@ @.

The structure is formally defined as:

typedef struct —ushd _device {

TAILQ _ENTRY (—usbd _device) dlink;
void * dext
usbd _device _hdl _t * dhdl,
uint32 _t dstatus
uint32 _t dflags
uint32 _t dev_addr;
uint32 _t dev_conf;
uint32 _t dew_iface
uint32 _t verbosity

} usbd _device _t;

The members are defined as follows:

dlink Q@@?
dext Q@@?
dhdl Q@@?

dstatus Q@@?
dflags Q@O@?

devaddr Device address.

174 Chapter 11 e USB Drivers

USB Driver Library reference

dev.conf Device configuration.

deviface Device interface.

verbosity Q@@?

ushd _entry _t

Theusbd _entry _t structure is passed tesbdconnect(}Xo provide
callback functions.

The structure is formally defined as:

typedef struct —usbd _entry {
—uint32 nentries

void (* insertion

(—uint32 rsvd,
—uint32 dev _addr,
—uint32 class,
—uint32 sclass,
—uint32 proto,
—uint32 did,

—uint32 vid);

void (* remova)
(—uint32 dev _addr,
usbd _device _t *devptr);
} usbd _entry _t;

The members are defined as follows:

nentries The number of entries in the structure. For the structure
as shown above, this would be the valle

insertion Callback function to call when an insertion of a USB
device is detected. Filtering of the particular type of
USB device is achieved via thesbd connect()
function’s parameters. The callback function is called

Chapter 11 e USB Drivers 175

USB Driver Library reference

with parameters describing the device that was
detectedclass sclass proto, did, andvid contain the
class, subclass, protocol, device ID, and vendor ID
(respectively). The parametgevaddr contains the
USB address of the device.

removal An optional callback function to call when a USB
device is removed. If you don’t wish to supply a
removal()function, specify the constantJLL.

] Note that the insertion and removal functions are called from a thread
that's created by thesbdconnect(function, so you must take care to
ensure that any resources shared between that thread and any other
thread(s) are properly protected (e.g. via a mutex).

usbd _hcd _info _t

Theusbd _hcd _info _t structure is filled byusbdhcd.info(), above,
and contains information about the Host Controller Driver (HCD).

The structure is formally defined as:

typedef struct —ushd _hcd _info {
—uint32 version
—uint32 capabilities
—_uint32 bandwidth
—_uint32 rsvd [12];

cfg _info _t cfg /| @@@where’'s cfg _info _t defined?
} usbd _hcd _info _t;

The members are defined as follows:

version Top 16 bits represent the USB version, and the
bottom 16 bits represent the stack version.

176 Chapter 11 e USB Drivers

USB Driver Library reference

capabilities Capabilities; one or more of the following bit values:
CAP_CNTL, CAP.BULK, CAP.INTR, CAP_ISOCH,
CAP_LOW_SPEEDN andCAP_HIGH_SPEED

bandwidth The currently allocated bandwidth in @@ @ (units).

rsvd Reserved, do not examine or modify.
cfg @@@?
usbd _pipe -t

Theusbd _pipe _t structure is the handle used to identify a pipe.

The structure is formally defined as:

typedef struct —usbd _pipe {

usbd _device _hdl _t * dev

TAILQ _ENTRY (~usbd _pipe) plink;
—_uint32 type
—uint32 endpoinf
—uint32 interval,
—uint32 packeLsize
—uint32 reserved [4];

} usbd _pipe _t;

The members are defined as follows:

dev Q@@?
plink @@@?
type @@@?
endpoint QO@?
interval @@@?
packetsize QO@?
reserved Reserved, do not examine or modify.

Chapter 11 e USB Drivers 177

USB Skeleton Driver

USB Skeleton Driver

The following annotated code sample shows the skeletal outline of a
typical USB class driver, which conforms to the general outline

presented in the USB Driver Library reference above.

/I work in progress...
/I Example class driver.

#include <stdio.h>
#include <errno.h>
#include <stddef.h>
#include <signal.h>
#include <pthread.h>
#include <sys/usbdi.h>

#include "skel.h"

void skel _write _complete(urb _t *urb, void *chdl)

{
chdl = chdl;
/I notify io —blk, io -net of status
pthread _sleepon _lock();
pthread _sleepon _signal(urb);
pthread _sleepon _unlock();
}
int skel _write(void *ihdl, void *dptr, _uint32 len)
{
_uint32 urb _status;
_uint32 usb _status;
_uint32 residual;
skel _ext _t *ext;

usb _device _t *sdev;

sdev = (usb _device _t *)ihdl;
ext = (skel _ext _t *)sdev —>ext;

if((urb = ushd _alloc —urb(0, 0)) == NULL) {
return(ENOMEM);
}

if((uptr = ushd _alloc(0, len)) == NULL) {
usbd _free _urb(urb);
return(ENOMEM);

}

memcpy(uptr, dptr, len);

usbd _setup _bulk(urb, NULL, USBD _DIR_OUT, uptr, len);
if(usbd _io(urb, ext —>ep _bout, skel
usbd _free _urb(urb);
usbd _free(uptr);
return(EIO);

_write _complete, sdev, USBD

178 Chapter 11 e USB Drivers

_TIME_DEFAULT)) {

USB Skeleton Driver

}

}

pthread _sleepon _lock();

while(usbd _status(urb, &urb _status, &usb _status, &residual)) {
pthread _sleepon _wait(urb);

pthread _sleepon _unlock();

usbd _status(urb, &urb _status, &usb _status, &residual);

ushd _free _urb(urb);
usbd _free(uptr);
return((urb _status == USBD _REQCMP) ? EOK : EIO);

int skel _setup —_pipes(usb _device _t *sdev)

{

_uint32 ep;
_uint32 scan;
_uint32 found,;
usb _device _descriptor _t ddesc;
usb _endpoint _descriptor _t edesc;
skel _ext _t *ext;
ext = (skel _ext _t *)sdev —>ext;

scan = SKEL _CONTROLEP | SKEL_BLKIN_EP | SKEL_BLKOUTEP;
found = 0;

ift usbd _get _desc(sdev ->dhdl, USB _DESCUDEVICE, 0, 0,
(ushd _addr _t *)&ddesc, sizeof(ddesc)) == EOK) {
if(usbd _open _pipe(sdev =>dhdl, &ddesc, &ext —>ep_cntl) == EOK) {
found |= SKEL _CONTROLEP;
}
}

for(ep = 0; ep < USB _MAXENDPOINT; ep++) {
if(usbd _get _desc(sdev =>dhdl, USB _DESCENDPOINT, ep, O,
(usbd _addr _t *)&edesc, sizeof(edesc))) {

continue;

}

switch(edesc.bDescriptorType) {
case USB_ISOCHRONOUSENDPOINT:

break;

case USB_BULK_ENDPOINT:
switch(edesc.bEndpointAddress & USB —_EP_DIR) {
case USB_EP_DIR_OUT:
if(usbd _open _pipe(sdev —>dhdl, &edesc,
&ext =>ep_bout) == EOK) {
found |= SKEL _BULKOUTEP;
}

break;

case USB_EP_DIR_IN:
if(usbd _open _pipe(sdev =>dhdl, &edesc,
&ext =>ep _bin) == EOK) {
found |= SKEL _BULKIN_EP;
}

break;

Chapter 11 ¢ USB Drivers

179

USB Skeleton Driver

break;

case USB_INTERRUPT_ENDPOINT:

break;
}
return((found == scan) ? SUCCESS : ERROR);
}
void skel _removal(_uint32 dev _addr, usbd _device _t *hdl)
{
dev _addr = dev _addr;
/I free resources
detach from io =-blk, io =-net, etc...
TAILQ _REMOVE(&SkelCtrl.dlist, hdl, dlink);
usbd _detach(hdl);
usbd _free _dev(hdl);
}
void skel _insertion(_uint32 rsvd, —uint32 dev _addr, _uint32 class,
—uint32 sclass, —uint32 proto, —uint32 did, —uint32 vid)
{
usbd _device _t *sdev;
usb _device _descriptor _t ddesc;
usb _interface _descriptor _t idesc;
usb _configuration _descriptor _t cdesc;
if((sdev = ushd _alloc _dev(sizeof(skel —ext -t))) == NULL) {
perror("usbd _alloc _dev: ");
return;
}
if(usbd _attach(SkelCntl.connection, dev —addr, USBD _ATTACH.RDWR, &sdev->dhdl)) {
perror(“usbd _attach: ");
usbd _free _dev(sdev);
return;
}

if(usbd _get _desc(sdev =->dhdl, USB _DESC.DEVICE, 0, 0,
(usbd _addr _t *)&ddesc, sizeof(ddesc))) {
perror("usbd _get _desc (device): ");
usbd _detach(sdev —>dhdl);
ushd _free _dev(sdev);
return;

}

if(usbd _get _desc(sdev —>dhdl, USB _DESC.CONFIGURATION, 0, O,
(usbd _addr _t *)&cdesc, sizeof(cdesc))) {
perror("usbd _get _desc (configuration): ");
usbd _detach(sdev —>dhdl);
usbd _free _dev(sdev);
return;

}

if(usbd _get _desc(sdev =->dhdl, USB _DESCINTERFACE, 0, 0,
(usbd _addr _t *)&idesc, sizeof(idesc))) {
perror("usbd _get _desc (interface): ");
usbd _detach(sdev —>dhdl);
usbd _free _dev(sdev);

180 Chapter 11 ¢ USB Drivers

USB Skeleton Driver

return;

}

/I selecting the configuration/interface will depend on your device
if(usbd _select _config(sdev —>dhdl, config)) {

perror("usbd _select _config: ");

usbd _detach(sdev —>dhdl);

ushd _free _dev(sdev);

return;
}
if(usbd _select _interface(sdev =>dhdl, config, interface, alternate)) {
perror("usbd _select _interface: ");
ushd _detach(sdev —>dhdl);
usbd _free _dev(sdev);
return;
}

if(skel _setup —_pipes(sdev)) {
fprintf(stderr, “"skel _setup —_pipes: \n");
usbd _detach(sdev —>dhdl);
usbd _free _dev(sdev);
return;

}
/I attach to io =blk, io —net, etc...

/I add sdev to device list
TAILQ _INSERT_TAIL(&SkelCtrl.dlist, sdev, dlink);
}

int main(int argc, char *argv[])
{
sigset _t set;
siginfo _t info;

SkelCntl.entry.nentries =2
SkelCntl.entry.removal = skel _removal;
SkelCntl.entry.insertion = skel _insertion;

if(usbd _connect(USBD _DFLT_STACK, 0, &SkelCtrl.entry, USBD _CONNECIWILDCARD,
USBD.CONNECIWILDCARD, USBRDCONNECIWILDCARD, SKEL.DEVICE-ID,
SKEL_VENDORID, &SkelCntl.connection)) {
perror("usbd _connect: ");
exit(EXIT _FAILURE);

}

/I become a resource manager at this point, or whatever...
/I in this example, we just wait for a termination signal
sigfillset(&set);

sigdelset(&set, SIGTERM);

pthread _sigmask(SIG _BLOCK, &set, NULL);

sigemptyset(&set);
sigaddset(&set, SIGTERM);
while(SignalWaitinfo(&set, &info) == -1)

/I free resources

Chapter 11 ¢ USB Drivers 181

USB Skeleton Driver

if(usbd _disconnect(SkelCntl.connection)) {
perror(“usbd _disconnect: ");
exit(EXIT _FAILURE);

exit(EXIT _SUCCESS);

182 Chapter 11 e USB Drivers

Appendix A

References

In this appendix. . .

References

Appendix: A e References 183

References

Audio driver
references

Block 1/O driver
references
Character I/O
driver references
Graphics driver
references
Network driver
references

PCI driver
references

USB driver
references

References

The following publications are useful for gaining a good
understanding of the QNX Neutrino operating system:

e Building Embedded Systems (QSSL)
e C Library Reference (QSSL)

e Programmer’s Guide (QSSL)

e System Architecture Guide (QSSL)

The audio driver APIs are based on the Linux ALSA (“Advanced
Linux Sound Architecture”) audio standard. For more information,
visit www.alsa —project.org on the web.

CAM spec? Various manufacturer docs, linux drivers...
POSIX specs?

Various manufacturer docs, linux drivers...

Various manufacturer docs, linux drivers...

Various manufacturer docs, linux drivers...

Various manufacturer docs, linux drivers... Alsayw.usb.org .

Appendix: A e References 185

Glossary

Glossary 187

Alpha (graphics)

ALSA

Anonymous Memory

API

BLT (graphics)

Block (driver)

CAM

Character (driver)

Chroma keying
(graphics)

Alpha blending is a technique of portraying transparency when
drawing an object. It combines the color of an object to be drawn (the
source) and the color of whatever the object is to be drawn on top of
(the destination). The higher the portion of source color, the more
opaque the object looks.

Advanced Linux Sound Architecture; an industry standard for audio
devices for the Linux community. Our sound drivers are based on the
API presented in the specification.

A chunk of memory that’s not identified by a name; for example, you
may require a chunk of memory in which to perform a DMA transfer,
but you don’t need to identify that memory to other processes.

Application Program Interface; the interface through which
applications access services. This is the “published” interface that
applications should use when communicating with a driver.

BLock Transfer (sometimes “BLIT” for BLock Image Transfer);
generally refers to the ability to move a rectangular array of pixels
from one location to another. The source and destination may be on
the video card or the system RAM, depending on the configuration.

A driver for a device that is accessed in a “block” manner — that is,
accessed as a collection of bytes, rather than on an individual
byte-by-byte basis. Contrast wi@haracter (driver).

Common Access Method; a specification for @ @@

A driver for a device that is accessed on a character-by-character
basis. Contrast witBlock (driver).

Chroma operations are a method of masking out pixel data during a
rendering operation (copies, image rendering, rectangles, etc.) based
on a chroma color value. The four basic modes of operation are:
masking on the source key color, masking on the destination key

Glossary 189

Colour
Configuration Descriptor
(USB)

Device Descriptor (USB)

DMA

DLL

Double Buffer (graphics)

DPMS (graphics)

Endpoint Descriptor
(USB)

190 Glossary

color, masking on everything but the source key color, and masking
on everything but the destination key color.

The correct spelling for “color.” =) See also “labour,” “neighbour,”
and “judgement.”

@@ @ See also Endpoint Descriptor (USB) and Device Descriptor
(USB).

@@ @ See also Endpoint Descriptor (USB) and Configuration
Descriptor (USB).

Direct Memory Access; a technigue used by hardware peripherals to
transfer data between the memory subsystem and the peripheral
without involving the CPU in the data transfer itself.

Also known as a shared object; an object module that can be loaded at
runtime to augment the process that it's loaded into.

@@ @ a technique that makes use of two buffers; one is the “current”
buffer that’s displayed on the device, and the second is the “drawing”
buffer that’s being updated. When the drawing buffer is updated, the
graphics card is told to use that buffer as the current buffer, and the
previously-current buffer becomes the drawing buffer. Allows updates
to an image to occur without any intermediate drawing operations
being visible; useful for animation.

Display Power Management System; a method of putting the monitor
into one of several low-power modes defined by VESA.

@@ @ See also Device Descriptor (USB) and Configuration
Descriptor (USB).

Endpoint (USB)

FIFO

Frame Buffer (graphics)

Isochronous (USB)

LIFO

Message Passing

NTSC (graphics)

PAL (graphics)

Palette (graphics)

@@@

First In First Out — a queueing order in which the oldest entry added
to a queue is the first entry that’s removed from the queue, then the
next-oldest entry, and so on. Contrast with LIFO. Also refers to a
hardware component that implements this queueing behaviour by
typically using a memory component for the storage of fixed-size
entries.

The memory area that's currently being used for display.

A transfer mode characterized by continuous, realtime requirements.
For example, a video stream must arrive at a defined rate, and hence
must reserve a certain amount of bandwidth.

Last In First Out — a queueing order in which the most-recent entry
added to a queue is the first entry that's removed from the queue, then
the next-most-recent, and so on. Contrast with FIFO.

Neutrino’s primary inter-process communications scheme. Messages
are sent from client to server, with the client blocking until the server
replies. The server can block, waiting for messages to arrive.

@@ @ North American Television Standard for Colour (?) or Never
The Same Colour; a standard defining the electrical signal used to
represent video. Contrast with PAL and SECAM.

Phase Alternate Line; a European standard defining the electrical
signal used to represent video. Contrast with NTSC and SECAM.
Also, to confuse the issue, the abbreviation “PAL" is used for palette.

A (usually small) number of colours represented by an index as
opposed to “directly” by red, green, and blue components. Used to
save on the amount of memory space provided on a graphics card, at
the expense of providing a full spectrum of colours.

Glossary 191

PCI

Physical Address

Pipe (USB)

POSIX

QSsL

Resource Manager (or
“resmgr”)

RGB format (graphics)

ROPS (graphics)
SECAM (graphics >

Span (graphics)

192 Glossary

Peripheral Component Interconnect; a hardware bus present on many
types of systems that allows peripherals to be interfaced to the CPU.

An address that corresponds directly to the signals emitted on the bus
(ISA, PCI, etc.) Generally used with DMA devices. Contrast with
Virtual address.

In the context of USB, a pipe is a connection between a client program
and an endpoint (and does not refer to a traditional UNIX pipe).

Portable Operating System Interface; a specification defining various
commands and APIs for a conforming system.

QNX Software Systems Limited; the company that manufactures the
QNX family of operating systems, of which Neutrino is the latest
member.

A device driver for Neutrino that handles certain well-defined
messages from clients. These messages correspond to various
file-descriptor based functions that the client of the driver calls.

A format for storing pixel colours where the “R” component
represents the intensity of red, “G” for green, and “B” for blue.
Contrast with YUV format. Also used to refer to the signals present
on a connector, whereby the red, green, and blue components of the
colour are presented on separate pins.

@@ @ Raster Operations.

@Q@@???@@@ Contrast with NTSC and PAL.

Another term for “horizontal line.”

Stride (graphics)

Surface (graphics)

USB

VESA (graphics)

Virtual Address

VLAN

YUV format (graphics)

The number of bytes that must be added to a given memory offset to
get to the next pixel below the given one. This is a function of the
memory organization of the graphics card.

@@@
Universal Serial Bus; an interconnect bus targetted for peripherals.
Video Electronics Standards Association.

An address that doe®t (necessarily) correspond with the signals
emitted onto the hardware bus. Such an address is local to a process;
this means that two different processes running on the same processor
may in fact both have the same virtual address, but each process will
have the virtual address translated to different physical addresses by
the MMU (Memory Management Unit). Contrast with Physical
Address.

Very Local Area Network; used to denote an (often) proprietary
network architecture often used for high-availability systems.

A format for storing pixel colours where the “Y” component
represents @@ @, the “U” component represents @@ @, and the “V”
component represents @@ @. Contrast with RGB format.

Glossary 193

