

QNX

Manual

QNX Software Systems Ltd.
175 Terence Matthews Crescent
Kanata, Ontario
K2M 1W8
Canada
Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com

Web: http://www.qnx.com/

 QNX Software Systems Ltd. 1999

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise

without the prior written permission of QNX Software Systems Ltd.

Although every precaution has been taken in the preparation of this book, we assume no responsibility for any errors or omissions, nor do we assume liability for damages resulting

from the use of the information contained in this book.

Publishing history

November 1999 Pre-Alpha edition

QNX is a registered trademark of QNX Software Systems Ltd.

All other trademarks and registered trademarks belong to their respective owners.

Cover art by ????.

Printed in Canada.

Part Number: ????

Contents

Introduction to Neutrino Device Drivers viiChapter 1
Audio driver ix

Block I/O driver ix

Character I/O driver ix

Flash filesystem driver x

Graphics driver x

Input driver x

Media players x

Network driver x

PCI xi

USB drivers xi

Understanding drivers in Neutrino xi

Duties of a driver xi

How a driver fits into the system xii

Typographical conventions xiv

Audio Drivers 1Chapter 2
Audio Drivers 3

Block I/O Drivers 5Chapter 3
Block I/O drivers 7

Character I/O Drivers 9Chapter 4
Character I/O drivers 11

Contents iii

Flash Filesystem Drivers 13Chapter 5
Flash Filesystem Drivers 15

Graphics Drivers 17Chapter 6
Graphics drivers 19

Graphics drivers in the Photon environment 19

Writing your own driver 20

The “Big Picture” 21

Binding your driver to the graphics framework 27

Conventions 28

The big picture 60

Utility Functions 77

Display driver utilities 78

PCI configuration access utilities 79

Memory manager utilities 81

Video memory management utilities 84

Graphics helper utilities 86

PETE – Photon 1.XX drivers 91

PETE – New API features 91

Input Devices 93Chapter 7
Input drivers 95

Types of event bus lines 95

Modules 96

Interface to the system 97

Source file organization fordevi -* 98

Writing an input driver 99

Media Players 101Chapter 8
Media Players 103

Using the supplied plugins — writing your own player 103

Writing your own media plugin 104

Binding to the player 104

iv Contents

Network Drivers 113Chapter 9
Network Drivers 115

The big picture 116

The lifecycle of a packet 118

The details 121

Writing your own driver 122

Binding to io -net 123

Telling io -net about our functions 125

Advertising the driver’s capabilities toio -net 128

Receiving data and giving it to a higher level 131

Transmitting data to the hardware 132

The details 133

Binding your driver toio -net 133

Thenpkt t data type 146

PCI Drivers 151Chapter 10
PCI drivers 153

USB Drivers 155Chapter 11
USB drivers 157

Overview 157

USB Driver Library reference 158

Functions by category 159

Alphabetical listing of functions and structures 160

USB Skeleton Driver 178

References 183Appendix A
References 185

Audio driver references 185

Block I/O driver references 185

Character I/O driver references 185

Graphics driver references 185

Network driver references 185

Contents v

PCI driver references 185

USB driver references 185

Glossary 187

vi Contents

Chapter 1

Introduction to Neutrino Device
Drivers

In this chapter. . .
Understanding drivers in Neutrino
Typographical conventions

Chapter 1 � Introduction to Neutrino Device Drivers vii

Here are the types of drivers we’ll be discussing in this book:

� Audio driver

� Block I/O driver

� Character I/O driver

� Flash filesystem driver

� Graphics driver

� Input driver

� Media players

� Network driver

� PCI

� USB drivers

An audio driver serves to decouple a particular implementation of aAudio driver
sound card from the generic APIs for sound support. The audio driver
operates in its own independent process and conforms to the API
outlined in the ALSA (“Advanced Linux Sound Architecture”)
specification.

The block I/O driver is responsible for providing a CAM-compatibleBlock I/O driver
interface to a block-oriented storage medium. The driver is
implemented as a DLL that gets bound in with the filesystem
components at runtime.

Character I/O drivers are responsible for providing standard,Character I/O
driver POSIX-API compatible interfaces to devices that operate on a

character-by-character basis (examples include serial ports, parallel
ports, and pseudo-tty’s). Neutrino ships with a character I/O library
that performs much of the common functions, such as interpreting
editing characters, maintaining input and output buffers, and so on.
The part of the driver that you supply deals almost exclusively with
the hardware or device.

Chapter 1 � Introduction to Neutrino Device Drivers ix

Flash filesystems are responsible for organizing raw flash memoryFlash filesystem

driver devices into a filesystem.

Graphics drivers are responsible for providing a set of proprietaryGraphics driver
APIs for the various GUI products we offer for Neutrino.

An input driver is the piece of software that goes between an inputInput driver
device, (keyboards, mice, etc.) and a piece of higher-level software,
like the Photon GUI.

Neutrino allows you to write your own media plugin modules that theMedia players
standardphplay command can use, or you can write your own player
as well. This chapter shows you how to do both.

Network drivers actually fall into the following classes:Network driver

� hardware interface

� qnet protocol stacks

� custom protocol stacks

� @@@ others? @@@

A network driver that provides a hardware interface is responsible for
presenting an abstract view of the networking hardware so that other
QSSL-supplied components (such as the TCP/IP stack, for example)
can function. @@@ how much is provided by libs? @@@

For native Neutrino networking, theqnet native networking manager
relies on protocol stacks that may or may not be based on TCP/IP. For
example, you may have several machines connected via a proprietary
backplane in a VLAN configuration, and you may need to write a
customized protocol driver for the VLAN.

If you’re providing a custom protocol stack that uses an existing
driver, then you’ll need to know about the hooks provided in
Neutrino’s networking framework for this purpose.

x Chapter 1 � Introduction to Neutrino Device Drivers

Understanding drivers in Neutrino

@@@ no idea @@@PCI

The Universal Serial Bus (USB) drivers are responsible for providingUSB drivers
sub-devices on the USB. Neutrino ships with a base USB driver that
talks to the USB hardware on the bus; you may wish to provide
support through that driver to USB devices on the USB bus. @@@
what do we provide? @@@

Understanding drivers in Neutrino

For each type of driver, we’ll examine in detail:

� the overall duties of the driver

� how it fits into a Neutrino system

� what parts of the driveryouhave to provide and what parts are
“standard”

� the interfaces between:

- the driver and its clients

- the part that you write and the standard libraries

� hints on how to make your driver faster, smaller, better

� how to debug your driver

� common pitfalls

� a complete driver, in source form, analyzed step-by-step.

At the highest level, a driver is something that provides a service.Duties of a driver
Some drivers may be standalone processes, while others may be
integrated into other processes (via a DLL).

The driver is responsible for handling the details of a particular piece
of hardware, a protocol, a filesystem, or some other abstract service.

Chapter 1 � Introduction to Neutrino Device Drivers xi

Understanding drivers in Neutrino

The goal of a driver is to provide a consistent interface to these
services, so that client programs can simply use the service without
having to be intimately involved in the details of the service itself.

For example, an audio driver is responsible for the details of the audio
card and presents a simple interface to the audio subsystem that
clients can use. A client program wants only toopen()an abstract
audio device andwrite() audio data — the client doesn’t want to
worry about manipulating the hardware of the audio device, handling
interrupts, dealing with DMA transfers, etc.

As another example, consider a graphics driver. Although the
interface between the driver and the GUI may be more complicated
than that provided by the audio driver, the principal is the same —
clients want to be able to draw lines, polygons, filled areas, etc.,
without explicit knowledge of the underlying hardware
implementation.

A client program can access the services of a driver through an API.How a driver fits
into the system In some cases, the API is defined by POSIX (for example, if you’re

using a serial port, then you’d use standard calls likeopen(), devctl(),
read(), write(), etc.). In other cases, the API is a de facto standard
(such as Linux’s ALSA — “Advanced Linux Sound Architecture”),
and in still other cases the API is proprietary (as in the case of
Photon). Regardless of its nature, the API is usually implemented via
message passing at some level. In this manual we assume you have a
good understanding of the concepts of Neutrino’s message-passing
services; if not, take a look at the References appendix for some
additional reading material.

If the driver you’re designing is accessed by a standard POSIX API,Resource managers

then you’ll also want to be familiar with Neutrino’s “resource
managers.” A resource manager is a server that accepts certain,
well-defined messages and handles them in certain, well-defined
ways. Neutrino ships with a library that aids in the creation of
resource managers. Again, the References appendix will be helpful
here.

xii Chapter 1 � Introduction to Neutrino Device Drivers

Understanding drivers in Neutrino

If you’re already familiar with drivers under other operating systems,
then you’ll want to pay particular attention to the following points,
which highlight some of the unique characteristics of Neutrino
drivers:

� a driver isnot bound into the kernel

� a driver operates in the context of a process

� a driver can be started and stopped on the fly

� a driver communicates via message passing,

� @@@ others @@@

@@@ Let’s talk about these characteristics in more detail, eh?

Chapter 1 � Introduction to Neutrino Device Drivers xiii

Typographical conventions

Typographical conventions

Throughout this manual, we use certain typographical conventions to
distinguish technical terms. In general, the conventions we use
conform to those found in IEEE POSIX publications. The following
table summarizes our conventions.

Reference Example

Code examples if(stream == NULL)

Command options -lR

Commands make

Environment variables PATH

File and pathnames /dev/null

Function names exit()

Keyboard chords Ctrl – Alt – Delete

Keyboard input something you type

Keyboard keys Enter

Program output login:

Programming constants NULL

Programming data typesunsigned short

Programming literals 0xFF , "message string"

Variable names stdin

Single-step instructions are formatted like this:

➤ To reboot your computer, pressCtrl – Alt – Shift – Delete.

xiv Chapter 1 � Introduction to Neutrino Device Drivers

Typographical conventions

Notes, cautions, and warnings are used to highlight important
messages:

Notes point out something important or useful.☞

CAUTION: Cautions tell you about commands or procedures that
may have unwanted or undesirable side effects.

WARNING: Warnings tell you about commands or procedures
that could be dangerous to your files, your hardware, or even
yourself.

Chapter 1 � Introduction to Neutrino Device Drivers xv

Chapter 2

Audio Drivers

In this chapter. . .
Audio Drivers

Chapter 2 � Audio Drivers 1

Audio Drivers

Audio Drivers

This chapter describes the audio driver in detail.

Chapter 2 � Audio Drivers 3

Chapter 3

Block I/O Drivers

In this chapter. . .
Block I/O drivers

Chapter 3 � Block I/O Drivers 5

Block I/O drivers

Block I/O drivers

This chapter describes the block I/O drivers in detail.

Chapter 3 � Block I/O Drivers 7

Chapter 4

Character I/O Drivers

In this chapter. . .
Character I/O drivers

Chapter 4 � Character I/O Drivers 9

Character I/O drivers

Character I/O drivers

This chapter describes the character I/O drivers in detail.

Chapter 4 � Character I/O Drivers 11

Chapter 5

Flash Filesystem Drivers

In this chapter. . .
Flash Filesystem Drivers

Chapter 5 � Flash Filesystem Drivers 13

Flash Filesystem Drivers

Flash Filesystem Drivers

This chapter describes the flash filesystem driver in detail.

Chapter 5 � Flash Filesystem Drivers 15

Chapter 6

Graphics Drivers

In this chapter. . .
Graphics drivers
Writing your own driver
Utility Functions
PETE – Photon 1.XX drivers
PETE – New API features

Chapter 6 � Graphics Drivers 17

Graphics drivers

Graphics drivers

VERSION 0004141500

The graphics drivers are independent of Photon; the driver that you
supply is implemented as one or more DLLs (your choice) that can be
used by Photon or by any other graphical system.

You provide a set of well-defined entry points, and the appropriate
graphics system will DLL-load your driver and call the entry points.

By way of example, this is how your driver interacts with Photon:Graphics drivers
in the Photon
environment

Photon
GUI

Connector
Geometry

engine

Font engine

Scans, images,
and bitmaps

Rasterizer
Graphics

driver

How a driver interacts with Photon.

As you can see from the above diagram, a set of Photon infrastructure
components are responsible for the interface to Photon:

Connector Presents the graphical region to Photon. This is the
area that’s defined to be shown on the graphical
screen. The connector also contains the draw stream
interpreter, which interprets Photon’sdraw streams
and decodes the graphical commands. The
interpreter converts the draw stream from whatever
endian format it’s in to native-endian format.

Chapter 6 � Graphics Drivers 19

Writing your own driver

Geometry engine

Converts complex shapes (like circles) into
lower-level drawing primitives that the graphics
driver can handle.

Font engine Converts textual information into bitmaps.

Scans, images, and bitmaps

Deals with bitmap data.

Rasterizer Converts lower-level drawing primitives into a raster
format.

H/W DLL Your graphics driver, supplied as one or more DLLs.

Note that your graphics driver may wish to take over some of the
functionality from the various supplied components (e.g. your card
can draw lines using hardware acceleration). Generally speaking,
you’ll only need to provide the functions that are unique to your card.

Writing your own driver

In this section, we’ll look at how you write a driver for your own card.

We’ll look at the following topics:

� the “Big Picture”

� binding your driver to the graphics framework

� conventions used in function calls

20 Chapter 6 � Graphics Drivers

Writing your own driver

Although the primary purpose of this document is to provide a means
of creating third-party Photon 2.0 drivers for Neutrino, the same
DLLs will also work with the Photon 1.1x drivers.

For developers that wish to maintain a Neutrino version as well as a
QNX 4 version, there’s special logic in theMakefile s provided that
will build a statically linked Photon 1.1x driver for QNX 4.

We provide a technote that’s shipped with the toolkit that details how
to use theMakefile s and various source files included so that you
can build various versions of the graphics drivers. This technote is
calledREADMEand is located in the root of the tree that you unpacked
that contains the source.

☞

Before we look at the data structures and functions, it’s important toThe “Big Picture”
understand the “big picture” for the Photon 2.0 Graphics Driver
Development Kit (GDDK).

The purpose of the GDDK is to allow third parties to write
accelerated drivers without requiring QSSL to become involved in
doing the work.

In this chapter, we assume that you have a basic familiarity withPrerequisites

graphics cards, terminology, and concepts. We assume that you know
what a pixel is, what a span is, blitting, alpha, chroma and raster
operations (there are brief descriptions in the glossary appendix,
however). We also assume that you have sufficient hardware
documentation for your card in order to be able to program all the
registers. A working knowledge of the C language is essential.

Two examples are provided with the GDDK:Examples

1 a generic flat frame buffer driver, and

2 an accelerated driver based on the 3DFX Voodoo Banshee card.

Chapter 6 � Graphics Drivers 21

Writing your own driver

We chose the Voodoo Banshee card as the basis for our example
because the register level programming docs are available to anyone
without needing an NDA.

The flat frame buffer example should be a good starting point for
nearly any modern card. You should start with this driver, and
implement accelerated versions for as many of the routines as
possible.

The flat frame buffer driver mostly just calls routines in the FFB
shared library. (The flat frame buffer driver is really quite small; it
consists mainly of library callouts.) You should check the flags in the
context argument to determine if your code can draw the specific type
of object being asked for (e.g. does it ask for alpha blending?). If your
code can perform the operation, then do it using the hardware,
otherwise, fall back to the flat frame buffer routines as shown in the
example source.

The Photon 2.0 GDDK is a set of DLLs that have been chosenThe modules

because they expose groups of functionality in a modular fashion.

@@@ would this be a good place to mention the tier stuff, in an
introductory manner? Then later we could tie it in with the
functions. . .

The main feature of the Photon 2.0 driver architecture is the manner
in which functional groups of accelerated routines are provided and
accessed.

Future modules can be defined and accessed in the same way as we
have defined the access methods for the current sets of functions.

The groups of routines currently defined are:

1 Mode switching and enumeration

2 2-D Drawing

3 Offscreen memory manager

4 Video overlay control

22 Chapter 6 � Graphics Drivers

Writing your own driver

Examples of routines that will be defined in future revisions of this
GDDK are:

� 3-D drawing routines,

� TV tuner control routines,

� Video capture routines, and

� 2-D geometric primitives.

We’ve defined our GDDK using separate modules for each functional
group to make it easier to package a complete driver solution. For
example, most graphics cards are able to define a seperate “stride” for
the source and destination surfaces when used in the various drawing
routines, and for these cards, the offscreen memory management
routines become routines that manage simple, linear chunks of
memory. For these cards, the “standard” offscreen memory manager
library routines can be used, and no card specific code needs to be
written.

Another example of this is if the implementor wants to use the
standard VESA routines for mode switching and enumeration. In that
case, the standard VESA DLL could be used for that module.

On the other hand, if a vendor wishes to shrink the size of things
down (for, say, a device with a fixed-size LCD screen), they could
replace the generic VESA DLL that we supply with a very small, fast,
customized direct mode switching module they wrote themselves.

Also of interest is the fact that we’ve engineered the function names
such that you could provide all the modules in a single DLL, or in
multiple DLLs, depending on your modularity and size tradeoff
requirements.

With Photon 2.0, it’s now possible (assuming the existence of theThe driver

DLL routines described in this GDDK) to write a single “driver” that
works for all cards. This driver is calledio -graphics under
Neutrino, and is responsible for:

Chapter 6 � Graphics Drivers 23

Writing your own driver

� connecting to the appropriate Photon server,

� locating the correct set of DLLs to use for a particular user on a
particular machine,

� and then loading those DLLs and using them to fulfill the
instructions encoded into the Photon draw stream.

Although the current implementation of this driver is limited to
driving one piece of hardware (i.e. one set of DLLs), it’s our intention
to makeio -graphics eventually handle an arbitrary number of
graphics devices, and also an arbitrary number of Photon servers,
simultaneously.

There are many operations defined in the Photon high-level API thatThe font engine and
render library are extremely unlikely to be handled by any kind of graphics

hardware. Good examples of these are circles and fonts.

Even if a graphics cardcouldhandle circles, it may draw them in a
card-dependent way that would cause problems for users who expect
consistent behaviour, so we need a way to handle them in a
completely consistent way.

The io -graphics driver solves these problems by using the render
library and the font manager to turn high-level entities into
lower-level objects that all hardware can draw consistently.

The font manager is obviously used for rendering any sort of text
objects. It’s currently designed to return “raster” style output which
the driver draws as bitmaps or images, but we plan to eventually use it
to return vector information that the driver could use directly.

The render library is used to “cook down” operations (other than
fonts) which are defined in the Photon API, but which make little
sense to implement in chipset-specific code. Circles are a good
example, but also things like “thick dashed lines” are done by the
render library.

The current implementation of the render library is designed to render
its output directly into the frame buffer, but future plans call for it to

24 Chapter 6 � Graphics Drivers

Writing your own driver

be upgraded to return other kinds of data such as lists of vertices
representing a polygonal area to fill.

Some of the planned changes mentioned above will be implemented
using a “2-D geometry module” that will be added to this GDDK, but
the main thing to remember is that you should only have to worry
about implementing the routines described in this GDDK document.

Mode switching and enumeration is the process of discovering whatMode switching and
enumeration kind of video card you have, what its capabilities are, and putting the

video card into one of its supported modes.

In the past, “trapping” for a particular graphics card was a potentially
difficult and even dangerous operation. There was noeasyway to
determine if a particular card was present.

The overwhelming majority of video cards today are PCI or AGP
devices, which makes the job of detecting video cards much,much
easier.

In a “standard” Photon 2.0 environment, there’s a list of PCI device
IDs that are matched up with a text description of the set of DLLs
required to drive that instance of a video card. This removes the need
to call specific code in the DLL simply to find out if a given card is
present and supported.

Enumeration of the video modes supported by a card roughly
corresponds to the VESA BIOS model. A list of numbers is returned
corresponding to the modes the card can do, and a function is called
for each of the mode numbers and returns information about that
mode.

Switching to a given mode is accomplished by calling a function with
one of the supported mode numbers.

2-D drawing routines are the functions that actually produce or2-D drawing

manipulate an image.

Operations that fall into this category include:

Chapter 6 � Graphics Drivers 25

Writing your own driver

� hardware cursor routines,

� filled rectangle routines,

� scanline operation routines, and

� BLT routines.

BLT routines include operations that draw an image that’s in system
RAM into the framebuffer and routines that move a rectangular
portion of the screen from one place to another.

There’s no provision in the current GDDK to use Bresenham line
hardware or polygon filling hardware. These operations will be
addressed by a 2-D geometry DLL to be defined later.

Offscreen memory management routines are the code that allows theOffscreen memory
manager io -graphics driver to manage the process of using the accelerator

to draw into various graphics objects, whether the objects are on the
screen or not.

Offscreen memory is the most important new API feature in Photon
2.0, and is what allows applications to achieve much better
performance than was possible in Photon 1.xx

Most modern video cards have far more memory than is actually
needed for the display. Most of them also allow the graphics hardware
to draw into this unused memory, and then copy the offscreen object
onto the visible screen, and vice-versa.

The offscreen management module deals with managing this memory.
The routines in this module deal with allocating and deallocating such
objects.

Video overlay control routines manage the process of initializing andVideo overlay control

using video overlay hardware to do things like show MPEG content.

A video overlay is a hardware feature that allows a rectangular area of
the visible screen to be replaced by a scaled version of a different
image. This process occurs without actually requiring the driver to

26 Chapter 6 � Graphics Drivers

Writing your own driver

explicitly avoid drawing in the framebuffer “underneath” the overlaid
region.
Most of the routines in this module deal with letting applications
know what kind of features the particular hardware supports and then
setting the overlay up to cover a specific area of the screen and to
accept an input stream of a particular size.

The rest of the overlay routines deal with implementing a protocol so
that the application knows when a given frame has been dealt with
and when it can send new frames to be displayed.

You must include the filedisplay.h , which contains structures thatBinding your
driver to the

graphics
framework

you’ll use to bind your driver to the graphics framework.

Binding of the driver is performed by the graphics framework
DLL-loading your driver, and then finding your entry point(s). The
name of the entry point depends on which functional block(s) your
DLL is providing; a single DLL can provide more than one functional
block, hence the names are unique. The following table applies:

Functional block Name of function

Core functions devgget corefuncs()

Context functions devgget contextfuncs()

Misc functions devgget miscfuncs()

Modeswitcher devgget modefuncs()

Memory manager / frame bufferdevgget memfuncs()

Video overlay devgget vidfuncs()

Chapter 6 � Graphics Drivers 27

Writing your own driver

The three functions,devgget miscfuncs(), devgget corefuncs(), and
devgget contextfuncs() mustbe supplied in the same DLL — all
three of these functions constitute one “group.”

☞

Note that all functions in the table have a similar structure: they each
get passed a pointer to adisp adapter t structure, a pointer to a
set of functions (the type of which depends on the function being
called), and a table size intabsize(plus other parameters as
appropriate).

Thedisp adapter t is the main “glue” that the graphics
framework uses to hold everything together. We’ll see this shortly.

The function pointers structure is what your function is expected to
fill in with all the available functions — this is how the graphics
framework finds out about the functions supported by each functional
block module.

Finally, the table size (tabsize) parameter indicates how many entries
the function pointers structure holds. This is so that your initialization
function doesn’t overwrite the area provided. Note that there’s a
macro indisplay.h (calledDISP ADD FUNC()) for stuffing
function pointers into the table; it automagically checks thetabsize
parameter.

Before we look at the function descriptions, here are someConventions
conventions that you should be aware of.

@@@pete : RGB/BGR whatever...Colour

The coordinate (0, 0) is the top left of the displayed area. CoordinatesCoordinate system

extend to the bottom right of the displayed area. For example, if your
graphics card has a resolution of 1280 (horizontal) by 1024 (vertical),
the coordinates would be (0, 0) for the top left through to (1279,
1023), for the bottom right.

28 Chapter 6 � Graphics Drivers

Writing your own driver

Your driver will only be passed sorted coordinates. This means that if,Coordinate ordering

for example, a “draw span” function gets called to draw a horizontal
line from (x1, y) to (x2, y), we guarantee thatx1 ≤ x2; we will never
passx1> x2.

All coordinates given areinclusive, meaning, for example, that a callCoordinate inclusivity

to draw a line from (5, 12) to (7, 12) shall producethreepixels (that
is, (5, 12), (6, 12), and (7, 12)) in the image, and not two. Therefore,
you’ll want to be careful to avoid this common coding mistake:

...

// WRONG!
for (x = x1; x < x2; x++) {

...

and instead use:

...

// CORRECT!
for (x = x1; x <= x2; x++) {

...

Every function is passed thedisp draw context t pointer as itsContext

first parameter. This gives the function access to the master context
block.

If your functions modify any of the context blocks during their
operation, theymustrestore them before they return. The graphics
framework will modify the context blocks at will, and will then call
the appropriateupdate*() function to inform you which parts of the
context data have been modified. Then, and only then, may one of
your functions be called upon to do something with the hardware. We
guarantee that we willnot modify the context blockswhileyour
function is running.

When a context function (i.e., a function that’s in the
disp draw contextfuncs t group of callouts) is called, it’s

Chapter 6 � Graphics Drivers 29

Writing your own driver

expected to perform the following processing (whenever it can’t do a
particular operation or handle a particular mode, it should revert to the
flat framebuffer version of the calls; this will perform the function in
software, which will be slower):

1 Look at theflag; can we do this operation?

2 Do we recognize the pattern format?

3 Can we handle this particularpixel format?

4 If a pattern is not involved, draw the plain version of the object.

5 If a pattern is involved, see if it’s a transparent pattern or a fill
pattern, and draw as appropriate.

@@@ddonohoe , looks like the rectangle case doesn’t handle all the
cases (e.g., chroma, alpha, rop) — what else needs to be added here?
Do we ship the source for the FFBLIBRARYfor them to take a look
at, or will the FFBdriver be sufficient for a “see also” kind of thing?

As an optimization, your driver would perform these checks in its
update()function (e.g. thedisp draw contextfuncs t ’s
updaterop3() function) and set a flag to itself (in its private context
structure) that indicates whether or not it can do the appropriate
function. This saves each and every context function from having to
perform this work at runtime; it just checks the flag.

Patterns are stored as a monochrome8x8 array. Since many of thePatterns

driver routines work with patterns, they’re passed in 8-bit chunks (an
unsigned char), with each bit representing one pixel. The most
significant bit (MSB) represents the left-most pixel, through to the
least significant bit (LSB) representing the right-most pixel. If a bit is
on (“1”) the pixel is considered “active,” whereas if the bit is off (“0”)
the pixel is considered “inactive.” The specific definitions of “active”
and “inactive,” however, depend on the context where the pattern is
used.

30 Chapter 6 � Graphics Drivers

Writing your own driver

As an example, the binary pattern11000001(hex0xC1) indicates three
“active” pixels: the left-most, the second left-most, and the
right-most.

Note that functions that have8x1 in their function names deal with a
single byte of pattern data (one horizontal line) whereas functions that
have8x8 in their function names deal with an8 by 8 array (eight
horizontal lines).

The pattern is a “circular” pattern, meaning that if additional bits are
required of the pattern past the end of the pattern definition (for that
line) the beginning of the pattern (for that line) is reused. For
example, if the pattern was11110000and 15 bits of pattern were
required, then the first eight bits would come from the pattern (i.e.,
11110000) and then the next 7 bits would once again come from the
beginning of the pattern (i.e.,1111000) for a total pattern of
111100001111000. See “Pattern rotation,” below for more details about
the initial offset into the pattern buffer. A similar discussion applies to
the vertical direction: If an 8 byte pattern is used and more pattern
definitions are required past the bottom of the pattern buffer, we start
again at the top.

Pattern rotation on a filled surface

In order to ensure a consistent “look” to anything that’s drawn with a
pattern, we need to understand the relationships amongst theX andY
coordinates of the beginning of the object to be drawn, the origin of
the screen, and thepat xoff andpat yoff members of the
disp draw contextfuncs t context structure.

Chapter 6 � Graphics Drivers 31

Writing your own driver

Three surfaces.

The diagram above shows three overlapping rectangles, representing
three separate regions (for example, threepterm s); we’ll focus our
discussion on the middle one. If an application drew three rectangles
within one Photon region, it would be up to theapplicationto draw
the three rectangles in the appropriate order — our discussion here
about clipping only applies to separate regions managed by Photon.

If only the middle rectangle was present (i.e., there were no other
rectangles obscuring it), your function to draw a rectangle with a
pattern (e.g.,draw rect pat8x8()), would be called once, with the
following arguments:

32 Chapter 6 � Graphics Drivers

Writing your own driver

Note that thex1, y1, x2andy2parameters are passed to the function
call itself, while thepat xoff andpat yoff parameters are part of a
data structure that the function has access to. We’ll just be listing the
raw variables here instead of explicitly mentioning their locations.

The values forx1, y1, x2andy2are reasonably self-explanatory; draw
a rectangle from (x1, y1) to (x2, y2). Thepat xoff andpat yoff values
are both zero. This indicates that you should begin drawing with the
very first bit of the very first byte of the pattern. If our pattern looked
like this:

Typical pattern.

Then the rectangle drawn would look like this:

Chapter 6 � Graphics Drivers 33

Writing your own driver

Pattern filling a surface.

If we supplied a value of anythingother thanzero for thepat xoff and
pat yoff parameters, (specifically, if we made those variables a
function of the location of the rectangle) then the pattern would
appear to “creep” along with the change of the location.

Let’s now turn our attention to the case where the other two rectangles
are partially obscuring our rectangle-of-interest.

When this needs to be drawn, the GUI may automatically transform
the single middle rectangle into a set of three rectangles,
corresponding to the area that’s still visible (this is called “clipping”):

� (3, 2) to (4, 3)

� (3, 4) to (6, 4)

� (5, 5) to (6, 6)

This therefore implies thatdraw rect pat8x8()will be called three
times:

34 Chapter 6 � Graphics Drivers

Writing your own driver

x1 y1 x2 y2 patxoff pat yoff

3 2 4 3 0 0

3 4 6 4 0 2

5 5 6 6 2 2

Notice how thepat xoff andpat yoff pattern offset values are
different in each call (first (0, 0), then (0, 2) and finally (2, 2)) in order
to present the same “window” on the pattern regardless of where the
rectangle being drawn begins. This is called “pattern rotation.”

Pattern rotation on an image

To find the right bit in the pattern for a rectangle at point (X, Y):

x index = (x + pat xoff) % 8;
y index = (y + pat yoff) % 8;

The BLIT functions take adxanddyparameter, so you should
substitute that in the equations above.

This function is used by the graphics framework to get your driver’sdevg get corefuncs()
core functions:

int
devg get corefuncs (disp adapter t * ctx,

unsigned pixel format,
disp draw corefuncs t * fns,
int tabsize);

The pixel format parameter

The extra parameter,pixel format, is defined below.

Chapter 6 � Graphics Drivers 35

Writing your own driver

Note that you’renot expected to be able to render into the formats
tagged with an asterisk (“*”) — these can only act as sources for
operations, not as destinations.

@@@ddonohoe can you recheck this list of non-renderable
formats? We’ve added and removed a bunch, so I’m not convinced
that this is up-to-date. Also, some of the names appear to be
inconsistent,DISP SURFACEFORMAT versusDISP PACKED and
DISP PLANAR, is this correct?

Therefore, these formats wouldn’t be specified as parameters to
devgget corefuncs().

In any case, if you receive apixel format that you don’t know what to
do with (or don’t want to handle yourself), you should call the
flat-framebuffer helper functions (see below, under Graphics helper
utilities) to perform the operation.

Also, the websitewww.webartz.com/fourcc contains an extensive
list of FOURCC(for “Four Character Code”) pixel formats,
corresponding to the definitions used below, with excellent diagrams
and explanations.

☞

DISP SURFACEFORMAT MONO (*)

pixel is 1 bit, and is monochrome.

DISP SURFACEFORMAT PAL4 (*)

pixel is 4 bits, and is selected from a palette of 16 (4 bits)
colours.

DISP SURFACEFORMAT PAL8

pixel is 8 bits, and is selected from a palette of 256 (8 bits)
colours.

36 Chapter 6 � Graphics Drivers

Writing your own driver

DISP SURFACEFORMAT ARGB1555

pixel is 16 bits, and the colour components for red, green, and
blue are 5 bits each (the top bit,0x80will be used for alpha
operations in the future).

DISP SURFACEFORMAT RGB565

pixel is 16 bits, and the colour components for red and blue are
5 bits each, while green is 6 bits.

DISP SURFACEFORMAT RGB888

pixel is 24 bits, and the colour components for red, green, and
blue are 8 bits each.

DISP SURFACEFORMAT ARGB8888

pixel is 32 bits, and the colour components for red, green, and
blue are 8 bits each, with the other 8 bits to be used for alpha
operations in the future.

DISP SURFACEFORMAT PACKEDYUV IYU1

12 bit format used in mode 2 of the IEEE 1394 Digital Camera
1.04 specification. The format is YUV (4:1:1) UYYVYY.

DISP SURFACEFORMAT PACKEDYUV IYU2

24 bit format used in mode 2 of the IEEE 1394 Digital Camera
1.04 specification. The format is YUV (4:4:4) UYVUYV.

DISP SURFACEFORMAT PACKEDYUV UYVY

Effectively 16 bits per pixel, organized as UYVY, two pixels
packed per 32-bit quantity.

DISP SURFACEFORMAT PACKEDYUV YUY2

Effectively 16 bits per pixel, organized as YUYV, two pixels
packed per 32-bit quantity.

DISP SURFACEFORMAT PACKEDYUV YVYU

Effectively 16 bits per pixel, organized as YVYU, two pixels
packed per 32-bit quantity.

Chapter 6 � Graphics Drivers 37

Writing your own driver

DISP SURFACEFORMAT PACKEDYUV V422

Same as YUY2, above.

DISP SURFACEFORMAT PACKEDYUV CLJR

Cirrus Logic’s pixel format. Packs 4 pixel samples into a single
32-bit quantity by having the Y samples be 5 bits and the U and
V samples be 6 bits each. Organization is YYYYUV.

DISP SURFACEFORMAT YPLANE

@@@Organization?@@@

DISP SURFACEFORMAT UPLANE

@@@Organization?@@@

DISP SURFACEFORMAT VPLANE

@@@Organization?@@@

DISP PACKED YUV FORMAT IYU1

12 bits per pixel, layout is U2Y2Y2V2Y2Y2 (horizontal 1:4:4,
vertical 1:1:1)

DISP PACKED YUV FORMAT IYU2

24 bits per pixel, layout is U4Y4V4U4Y4V4 (horizontal 1:1:1,
vertical 1:1:1)

DISP PACKED YUV FORMAT UYVY

16 bits per pixel, layout is U8Y8V8Y8 (horizontal 1:2:2,
vertical 1:1:1)

DISP PACKED YUV FORMAT YUY2

16 bits per pixel, layout is Y8U8Y8V8 (horizontal 1:2:2,
vertical 1:1:1)

DISP PACKED YUV FORMAT YVYU

16 bits per pixel, layout is Y8V8Y8U8 (horizontal 1:2:2,
vertical 1:1:1)

38 Chapter 6 � Graphics Drivers

Writing your own driver

DISP PACKED YUV FORMAT V422

16 bits per pixel, layout is V8Y8U8Y8 (horizontal 1:2:2,
vertical 1:1:1)

DISP PACKED YUV FORMAT CLJR

8 bits per pixel, layout is V6U6Y5Y5Y5Y5 (horizontal 1:3:3,
vertical 1:1:1)

DISP PLANAR YUV FORMAT YVU9

9 bits per pixel, layout is YVU (horizontal 1:4:4, vertical 1:4:4)

DISP PLANAR YUV FORMAT YV12

12 bits per pixel, layout is YUV (horizontal 1:2:2, vertical
1:2:2)

DISP PLANAR YUV FORMAT I420

12 bits per pixel, layout is YVU (horizontal 1:2:2, vertical
1:2:2)

DISP PLANAR YUV FORMAT CLPL

Same asDISP PLANAR YUV FORMAT YV12 except that the U
and V planes do not have to contiguously follow the Y plane.
Also known as the “Cirrus Logic Planar format.”

DISP PLANAR YUV FORMAT VBPL

Same asDISP PLANAR YUV FORMAT YV12 except that the U
and V planes do not have to contiguously follow the Y plane.
Also known as the “VooDoo Banshee Planar format.”

DISP SURFACEFORMAT BYTES

Surface is a collection of bytes with no defined format (for
example, unallocated frame buffer memory).

DISP SURFACEFORMAT PAL

A flag that’s OR’d in to the surface type to indicate it’s a palette
based format.

Chapter 6 � Graphics Drivers 39

Writing your own driver

DISP SURFACEFORMAT YUV

A flag that’ OR’d in to the surface type to indicate a YUV
colour format.

The pointer to function table is defined as follows (the parameters are
listed in the function definitions section, below):

typedef struct disp draw corefuncs {
void (* wait idle) (. . .);

void (* update draw surface) (. . .);
void (* update pattern) (. . .);

void (* draw span) (. . .);
void (* draw span list) (. . .);
void (* draw solid rect) (. . .);
void (* draw line pat8x1) (. . .);
void (* draw line trans8x1) (. . .);
void (* draw rect pat8x8) (. . .);
void (* draw rect trans8x8) (. . .);

void (* blit1) (. . .);
void (* blit2) (. . .);

} disp draw corefuncs t;

The core functions only need to obey the target info from the
disp draw context t structure, unless otherwise noted.

void (* wait idle) (disp draw context t * context)

This function will wait for the hardware to become idle, and will then
return. This implies that it’s safe to directly access the frame buffer
after this function returns.

void (* update draw surface) (disp draw context t
* context)

The surface has changed, examine the members pointed to by the
surfacestructure pointer member of thecontext.

40 Chapter 6 � Graphics Drivers

Writing your own driver

void (* update pattern) (disp draw context t * context)

The pattern has changed, examine thecontextmemberspat, pat xoff,
pat yoff, andpattern format.

void (* draw span) (disp draw context t * context,
disp color t color, int x1, int x2, int y)

Draw a plain, ordinary, opaque, horizontal line with the given colour
from (x1, y) to (x2, y). Doesnot make use of any pattern information
— the line is a single, solid colour.

void (* draw span list) (disp draw context t * context,
int count, disp color t color, int * x1, int * x2, int
* y)

Identical todraw span()above, except a list of lines is passed, with
countindicating how many elements are present in thex1, x2, andy
arrays.

void (* draw solid rect) (disp draw context t * context,
disp color t color, int x1, int y1, int x2, int y2)

Draw a plain, ordinary, opaque rectangle with the given colour (in
color), from (x1, y1) to (x2, y2). Doesnot make use of any pattern
information — the rectangle is a single, solid colour.

void (* draw line pat8x1) (disp draw context t * context,
disp color t bgcolor, disp color t fgcolor, int x1, int
x2, int y, uint8 t pattern)

Uses the passedpatternas described in the “Patterns” section of
“Conventions,” above. An active bit is drawn with thefgcolor colour,
and an inactive bit is drawn with thebgcolorcolour.

Chapter 6 � Graphics Drivers 41

Writing your own driver

void (* draw line trans8x1) (disp draw context t * context,
disp color t color, int x1, int x2, int y, uint8 t
pattern)

Uses the passedpatternas described in the “Patterns” section of
“Conventions,” above. An active bit is drawn with thecolor colour,
and an inactive bit does not affect existing pixels.

void (* draw rect pat8x8) (disp draw context t * context,
disp color t fgcolor, disp color t bgcolor, int x1, int
y1, int x2, int y2)

Uses the context structure’s memberspat, pat xoff, pat yoff, (but not
pattern formatas it’s already defined implicity by virtue of this
function being called). The pattern is used as described in the
“Patterns” section of “Conventions,” above. An active bit is drawn
with thefgcolor colour, and an inactive bit is drawn with thebgcolor
colour. See the section “Patterns,” above, for more information about
patterns.

void (* draw rect trans8x8) (disp draw context t * context,
disp color t color, int x1, int y1, int x2, int y2)

Uses the context structure’s memberspat, pat xoff, pat yoff, (but not
pattern formatas it’s already defined implicity by virtue of this
function being called). The pattern is used as described in the
“Patterns” section of “Conventions,” above. An active bit is drawn
with thecolor colour, and an inactive bit does not affect existing
pixels. See the section “Patterns,” above, for more information about
patterns.

void (* blit1) (disp draw context t * context, int sx,
int sy, int dx, int dy, int width, int height)

Blits within the surface defined by the context structure’ssurface
member (i.e., the source and destination are within the same surface).
The contents of the area defined by the coordinates (sx, sy) for width

42 Chapter 6 � Graphics Drivers

Writing your own driver

widthand heightheightare transferred to the same-sized area defined
by the coordinates (dx, dy).

void (* blit2) (disp draw context t * context,
disp surface t * src, disp surface t * dst, int sx, int
sy, int dx, int dy, int width, int height)

Blits from the source surface specified bysrc to the destination
surface specified bydst. The contents of the area defined by the
coordinates (sx, sy) for width widthand heightheightare transferred
to the same-sized area defined by the coordinates (dx, dy). Note that
thesrcanddstsurfaces can be the same or different, whereas in
blit1() (above), the operation takes place on thesamesurface (as
implied by the lack of a destination surface parameter). Therefore, the
driver should check the surface flags to see where thesrcanddst
images are (either in system memory or video memory) before
performing the operation.

This function is used by the graphics framework to get your driver’sdevg get contextfuncs()
context functions:

int
devg get contextfuncs (disp adapter t * ctx,

disp draw contextfuncs t * fns,
int tabsize);

The pointer to function table is defined as follows (the parameters are
listed in the function definitions section, below):

typedef struct disp draw contextfuncs {
void (* draw span) (. . .);
void (* draw span list) (. . .);
void (* draw rect) (. . .);

void (* blit) (. . .);

void (* update general) (. . .);
void (* update fg color) (. . .);
void (* update bg color) (. . .);
void (* update rop3) (. . .);
void (* update chroma) (. . .);
void (* update alpha) (. . .);

} disp draw contextfuncs t;

Chapter 6 � Graphics Drivers 43

Writing your own driver

All functions in the context drawing structure must obey the members
of thedisp draw context t structure (e.g., the current
foreground colour); check theflagsto see which members of the
context structure need to be obeyed. Note also that the core functions
updatepattern()andupdatedraw surface()affect the operation of
these (the context) functions.

@@@ remind them of theupdate*() funcs; here or in each
applicable description?

void (* draw span) (disp draw context t * context, int
x1, int x2, int y)

Called to draw a single, horizontal line from (x1, y) to (x2, y).

void (* draw span list) (disp draw context t * context,
int count, int * x1, int * x2, int * y)

Called to drawcountnumber of horizontal lines as given by the arrays
x1, x2, andy.

void (* draw rect) (disp draw context t * context, int
x1, int y1, int x2, int y2)

Called to draw a rectangle from (x1, y1) to (x2, y2).

void (* blit) (disp draw context t * context,
disp surface t * src, disp surface t * dst, int sx, int
sy, int dx, int dy, int width, int height)

Called to perform a blit. The pixels from the source surface (src)
specified by the rectangle beginning at (sx, sy) for the specified size
(lengthandheight) should be moved to the destination surface
beginning with the rectangle at (dx, dy) for the same size.

44 Chapter 6 � Graphics Drivers

Writing your own driver

void (* update general) (disp draw context t * context)

Re-read all members of the context; potentially, all of them could
have changed.

void (* update fg color) (disp draw context t * context)

Re-read only the foreground colour of the context. This isfg color.

void (* update bg color) (disp draw context t * context)

Re-read only the background colour of the context. This isbg color.

void (* update rop3) (disp draw context t * context)

Re-read only the raster operation-related members of the context.
Checkflagsto see if ROP3 functions are enabled or disabled. If
enabled, look atrop3.

void (* update chroma) (disp draw context t * context)

Re-read only the chroma-related members of the context. Checkflags
to see if chroma functions are enabled or disabled. If enabled, look at
chromamodeandchromacolor0.

void (* update alpha) (disp draw context t * context)

Re-read only the alpha-related members of the context. Checkflagsto
see if the alpha functions are enabled or disabled. If enabled, look at
alpha mode, s alpha, d alpha, alpha mapwidth, alpha map height,
alpha mapxoff, alpha mapyoff, andalpha map.

This function is used by the graphics framework to get your driver’sdevg get miscfuncs()
miscellaneous functions:

int

Chapter 6 � Graphics Drivers 45

Writing your own driver

devg get miscfuncs (disp adapter t * ctx,
disp draw miscfuncs t * fns,
int tabsize);

The pointer to function table is defined as follows (the parameters are
listed in the function definitions section, below):

typedef struct disp draw miscfuncs {
int (* init) (. . .);
void (* fini) (. . .);

void (* set palette) (. . .);

int (* set hw cursor) (. . .);
void (* enable hw cursor) (. . .);
void (* disable hw cursor) (. . .);
void (* set hw cursor pos) (. . .);

} disp draw miscfuncs t;

Note that if the driver does not support hardware cursors then it
should setall of the hardware cursor entry points toNULL. If any one
of the hardware cursor entry points is non-NULL thenall hardware
cursor entry points must be supplied.

☞

int (* init) (disp adapter t * adapter)

Initialize the drawing hardware, allocate resources; whatever. Refer to
the call chart below (in the description for thedisp adapter t ’s
init() callout) for more information on where this initialization
function “fits” into the general flow.

void (* fini) (disp adapter t * adapter)

Un-initialize yourself by freeing resources, etc. See the call chart
below (in the description for thedisp adapter t ’s init() callout)
for more information on where this uninitialization function “fits” into
the general flow.

46 Chapter 6 � Graphics Drivers

Writing your own driver

void (* set palette) (disp draw context t * ctx, int index,
int count, disp color t * pal)

This function is called to set the palette. Note, however, that if the
modeswitcher version of this function (disp modefuncs ->

set palette) is present, it will be called instead (i.e., the modeswitcher
function overrides this function).

int (* set hw cursor) (disp adapter t * ctx, uint8 t
* bmp0, uint8 t * bmp1, unsigned color0, unsigned color1,
int hotspot x, int hotspot y, int size x, int size y, int
bmp stride)

Set the attributes of the hardware cursor. Note that the term “hotspot”
represents the “active” point of the cursor (e.g., the tip of the arrow in
case of an arrow cursor, or the center of the crosshairs in case of a
crosshair cursor, etc.).

If the cursor cannot be displayed properly, this function should return
a -1, which will cause the framework to show a software cursor
instead. For example, ifsizexor sizeyis too big, this function should
return-1.

The cursor image itself is defined by two bitmaps. The two colours,
color0andcolor1apply respectively to the two bitmapsbmp0and
bmp1. Both bitmaps have the same width (sizex), height (sizey), and
stride (bmpstride) values.

For a given pixel within the cursor image, a0 in both bitmap locations
means this pixel is transparent. A1 in bmp0means draw the
corresponding pixel using the colour given bycolor0. A 1 in bmp1
means draw the corresponding pixel using the colour given bycolor1.
If there’s a1 in bothbitmaps, thencolor1 is to be used.

void (* enable hw cursor) (disp adapter t * ctx)

Make the cursor visible.

Chapter 6 � Graphics Drivers 47

Writing your own driver

void (* disable hw cursor) (disp adapter t * ctx)

Make the cursor invisible.

void (* set hw cursor pos) (disp adapter t * ctx, int x,
int y)

Position the cursor such that the hotspot is located at (x, y) in screen
coordinates.

This function is used by the graphics framework to get your driver’sdevg get modefuncs()
modeswitcher functions:

int
devg get modefuncs (disp adapter t * ctx,

disp modefuncs t * fns,
int tabsize);

The pointer to function table is defined as follows (the parameters are
listed in the function definitions section, below):

typedef struct disp modefuncs {
int (* init) (. . .);
void (* fini) (. . .);

int (* get modeinfo) (. . .);
void (* get modelist) (. . .);
int (* set mode) (. . .);

int (* disable vga) (. . .);
void (* reenable vga) (. . .);

void (* set dpms mode) (. . .);

void (* set display offset) (. . .);

void (* set palette) (. . .);

void (* get current crtc settings (. . .);
} disp modefuncs t;

48 Chapter 6 � Graphics Drivers

Writing your own driver

int (* init) (disp adapter t * ctx)

Initialize your hardware. The return value from this function is-1 to
indicate an error, or a natural number to indicate the number of
displays that this mode switcher controls. As an example, a display
card could control both a flat-panel and a monitor simultaneously; in
this case the return value would be2.

The following call chart applies:

modeswitch -> init ();
modeswitch -> setmode ();
mem-> init ();

misc -> init ();
...
// graphics functions get called here
...
// user requests a new mode; shut everything down

misc -> fini ();
mem-> fini ();
// at this point no more graphics functions will be called

modeswitch -> setmode ();
mem-> init ();

misc -> init ();
...
// graphics functions get called here
...
// shutdown of graphics drivers requested here

misc -> fini ();
mem-> fini ();
// at this point no more graphics functions will be called

modeswitch -> fini ();

void (* fini) (disp adapter t * ctx)

Return your hardware to the uninitialized state; deallocate resources,
etc.

Chapter 6 � Graphics Drivers 49

Writing your own driver

int (* get modeinfo) (disp adapter t * ctx, int dispno,
unsigned mode, disp mode info t * info)

Populate theinfo structure with information pertaining to the mode
specified inmodefor the display number referenced bydispno. See
the note about modes inget modelist()below for more information.

void (* get modelist) (disp adapter t * ctx, int dispno,
unsigned * list, int index, int size)

Returns a maximum ofsizemodes into the arraylist, starting at the
index index, for the display number referenced bydispno. Theindex
parameter is in place to allow multiple calls to theget modelist()
function in case there are more modes than will fit into thelist array
on any given call. The list of modes is terminated with the constant
DISP MODE LISTEND (therefore you should not return this as a valid
mode!). The list of modes must be returned in the exact same order
each time, but there is no requirement to “order” the list by any
sorting criteria.

If you AND a mode number with the constantDISP MODE GENERIC
you can tell whether the mode supports generic timings. This means
that you must be careful about the mode numbers that you select, so
that they correctly have theDISP MODE GENERICbit set or unset as
appropriate. See below insetmode()for more information.

Note that it’s themode number(thecontentof the list array) that’s
important for subsequent calls, andnot the mode index itself. For
example, if your driver returned the following array:

list [0] = 0x1234;
list [1] = 0x070B;
list [2] = 0x8086;
list [3] = DISP MODELISTEND; // terminate list

Then yourget modeinfo()andsetmode()functions would be called
with, for example,0x8086andnot the index2.

50 Chapter 6 � Graphics Drivers

Writing your own driver

int (* set mode) (disp adapter t * ctx, int dispno,
unsigned mode, disp crtc settings t * settings,
disp surface t * surf, unsigned flags)

Set the hardware for the display referenced bydispnoto the mode
specified bymode. See the note about modes inget modelist()above
for more information.

Thesettingsparameter is validonly if the mode number ANDed with
DISP MODE GENERICis non-zero, implying that you can pass an
arbitrary X and Y resolution and refresh rate.

int (* disable vga) (disp adapter t * ctx)

Disables the VGA registers, if possible. If not possible (i.e., the VGA
card is on an ISA bus), the function returns-1 and setserrno to
ENOSYS. If the VGA registers can be disabled, this function returns
the previous state of the VGA registers (a1 to indicate “enabled,” or a
0 to indicate “disabled”) so that the state can be restored by
reenablevga(), below.

void (* reenable vga) (disp adapter t * ctx)

Enables the VGA registers. This function will not be called unless
disablevga()previously returned a1 to indicate that the VGA had
been enabled.

void (* set dpms mode) (disp adapter t * ctx, int dispno,
int mode)

Select a DPMS mode for the display referenced bydispnoas follows:

Mode Meaning

0 On

continued. . .

Chapter 6 � Graphics Drivers 51

Writing your own driver

Mode Meaning

1 Standby

2 Suspend

4 (not a typo) Off

void (* set display offset) (disp adapter t * ctx, int
dispno, unsigned offset)

Moves the video memory base for the display referenced bydispno.
Note that theoffsetmember must be a multiple of thecrtc start gran
member of thedisp mode info t structure.

void (* set palette) (disp adapter t * ctx, int dispno, int
index, int count, disp color t * pal)

Called to set the palette for the display referenced bydispno. One or
more entries in the palette can be set at a time with this function call.
The indexindicates the starting palette index, andcountindicates the
number of entries being set. Finally,pal contains an array of colour
values, one per entry, to set.

Note that if this function is specifed (i.e., notNULL in the function
pointersetpalette), then it will be called regardless of whether or not
thesetpalette()function in the miscellaneous callouts structure has
been supplied:

if (disp modefuncs -> set palette) {
(*disp modefuncs -> set palette) (. . .);

} else if (disp draw miscfuncs -> set palette) {
(*disp draw miscfuncs -> set palette (. . .);

}

52 Chapter 6 � Graphics Drivers

Writing your own driver

void (* get current crtc settings) (disp adapter t * ctx, int
dispno, disp crtc settings t * settings)

Fills thesettingsstructure based on the current state of the display
controller specified bydispno.

This function is used by the graphics framework to get the videodevg get vidfuncs()
overlay functions:

int
devg get vidfuncs (disp adapter t * ctx,

disp vidfuncs t * funcs,
int tabsize);

The pointer to function table is defined as follows (the parameters are
listed in the function definitions section, below):

typedef struct disp vidfuncs {
int (* init) (. . .);
void (* fini) (. . .);
void (* module info) (. . .);
int (* get channel caps) (. . .);
int (* set channel props) (. . .);
int (* next frame) (. . .);
int (* close channel) (. . .);

} disp vidfuncs t;

@@@ Need a general, high-level overview/description kind of thing
to put this into context...

General capabilities of a video scaler, for a given format:

typedef struct {
unsigned short size;
unsigned short reserved0;
unsigned flags;
unsigned format;
int src max x;
int src max y;
int max mag factor x;
int max mag factor y;
int max shrink factor x;
int max shrink factor y;
unsigned reserved [8];

} disp vid channel caps t;

Chapter 6 � Graphics Drivers 53

Writing your own driver

size Size of this struct.

reserved0, reserved

Reserved, do not examine or modify.

flags Flags beginning with the stringDISP VID CAP, see below.

format The pixel format, see “Thepixel formatparameter,”
above.

src max x, src maxy

Maximum width and height of source frames.

max mag factor x, max mag factor y

Magnification — a-1 means cannot scale upwards.

max shrink factor x, maxshrink factor y

1 means cannot scale downwards.

The followingflagsmember bits are defined:

DISP VID CAP SRCCHROMA KEY

Video viewport supports chroma-keying on frame data.

DISP VID CAP DST CHROMA KEY

Video viewport supports chroma-keying on desktop data.

DISP VID CAP BUSMASTER

Scaler device can bus-master the data from system ram.

DISP VID CAP DOUBLE BUFFER

Scaler channel can be double-buffered.

DISP VID CAP DRIVER CAN COPY

The driver can perform the transfer of frame data.

54 Chapter 6 � Graphics Drivers

Writing your own driver

DISP VID CAP APP CAN COPY

The app can transfer the frame data.

DISP VID CAP BRIGHTNESSADJUST

Brightness of video viewport can be adjusted.

DISP VID CAP CONTRAST ADJUST

Contrast of video viewport can be adjusted.

Configurable properties of a video scaler channel:

typedef struct {
unsigned short size;
unsigned short reserved0;
unsigned flags;
unsigned format;
disp color t chroma key0;
unsigned reserved1;
unsigned chroma flags;
disp color t chroma key mask;
disp color t chroma mode;
int x1, y1;
int x2, y2;
int src width, src height;
unsigned fmt index;
short brightness;
short contrast;
disp vid alpha t alpha [DISP VID MAX ALPHA];
unsigned reserved [8];

} disp vid channel props t;

And the fields are as follows:

size Size of this structure.

reserved0, reserved1, reserved

Reserved, do not examine or modify.

flags See below for details.

format Format of the frame data.

Chapter 6 � Graphics Drivers 55

Writing your own driver

chromakey0 Chroma-key colour.

chromaflags Chroma-key comparison operation.

chromakeymask

Colours are masked with this before chroma
comparison.

chromamode Type of chroma key match to perform, see below
for details.

x1, y1 Top left corner of video viewport in display
coords.

x2, y2 Bottom right corner of video viewport in display
coords.

src width, src height

Dimensions of the video source data.

fmt index Selects the format of the source frame data.

brightness Brightness adjust.0x7fff = normal,0 darkest,0xffff
brightest.

contrast Contrast adjust.0x7fff = normal,0 minimum,0xffff
maximum.

alpha Array of regions of the video viewport to be
blended with desktop.

Theflagsmember can be selected from the following:

DISP VID FLAG ENABLE

Enable the video viewport.

DISP VID FLAG CHROMA ENABLE

Perform chroma-keying.

56 Chapter 6 � Graphics Drivers

Writing your own driver

DISP VID FLAG DOUBLE BUFFER

Perform double-buffering.

DISP VID FLAG DRIVER DOESCOPY

Driver performs the copy of frame data in thenext frame()
routine.

DISP VID FLAG APP DOESCOPY

Driver copies the frame data after calling thenext frame()
routine.

Thechromamodemember can be selected from the following:

DISP VID CHROMA FLAG DST

Perform chroma test on desktop data.

DISP VID CHROMA FLAG SRC

Perform chroma test on video frame data.

And now, the entry points:

int (* init) (disp adapter t * adapter, char * optstring)

Returns the number of scalers available (functions similarly to the
way the modeswitcher’sinit() function returns the number of display
controllers available).

void (* fini) (disp adapter t * adapter)

Frees resources, disables all scalers (makes them invisible). Must free
any offscreen memory that was reserved for frame data.

Chapter 6 � Graphics Drivers 57

Writing your own driver

void (* module info) (disp adapter t * adapter,
disp module info t * info)

Fills thedisp module info t structure (see below for contents).

int (* get channel caps) (disp adapter t * adapter, int
channel, int fmt index, disp vid channel caps t * caps)

Get the scaler capabilities for a given pixel format. We start with a
fmt indexof 0, and keep calling withfmt indexbeing incremented,
until the function returns-1. Thus, you can retrieve info on each
format supported by the scaler denoted bychannel. Channels are
0-based, i.e. ifinit() said there were3 channels, then the valid channel
numbers are0 to 2, inclusive.

int (* set channel props) (disp adapter t * adapter, int
channel, disp vid channel props t * props,
disp surface t * yplane1, disp surface t * yplane2,
disp surface t * uplane1, disp surface t * uplane2,
disp surface t * vplane1, disp surface t * vplane2)

Configure a scaler channel. Unless we set the
DISP VID FLAG APP DOES COPYflags, the*plane* parameters
should be ignored. Otherwise, each plane parameter points to a
surface descriptor. Only thestrideandpaddrmembers are defined.
Thepaddrmembers are the physical address of the video frame data
buffers. Unless we set theDISP VID FLAG DOUBLE BUFFERflag,
the*plane2parameters should be ignored. Unless the frame data
format is planar (more than one surface needed) then theuplane*and
vplane*parameters should be ignored by the driver.

int (* next frame)(disp adapter t * adapter, int channel,
disp surface t * yplane, disp surface t * uplane,
disp surface t * vplane)

If the driver is doing the copying, thennext frame()is called when a
new frame is ready to copy. The*plane* pointers point to the surface
data for the frame. If the data format is non-planar, then only the

58 Chapter 6 � Graphics Drivers

Writing your own driver

yplanepointer is valid. (Note that the scaler may also support RGB or
other non-YUV formats, in which caseyplanepoints to the data). If
the application is doing the copying, then the driver should ignore all
plane pointers. In that case,next frame()is calledbeforethe driver
starts copying the next frame’s data. This function will return the
frame index (0 or 1) if double buffering, to specify whether the data
should be copied to the*plane1surface set, or the*plane2surface set
that was returned byset channelprops(), above. In all other cases,
this function should return0.

For valid surface descriptors, only thestrideandvidptr members are
defined.

int (* close channel) (disp adapter t * adapter, int
channel)

Disable the scaler specified bychannel. You should free up any
offscreen memory that you may have allocated for the frame data on
this channel.

Here’s the definition of thedisp module info t data type:The
disp module info t

structure typedef struct disp module info {
unsigned short rev major;
unsigned short rev minor;
char * description;

} disp module info t;

Therev major andrev minor members indicate the major and minor
revision numbers, and the stringdescriptioncontains an ASCII
description of the module. Here’s an example:

disp module info t info;

info.rev major = 1;
info.rev minor = 123;
info.description = "3dfx VooDoo Banshee / VooDoo3";

This is for a module called" 3dfx VooDoo Banshee / VooDoo3" with
a version of1.123.

Chapter 6 � Graphics Drivers 59

Writing your own driver

Refer to the following include files for the details as we discuss theThe big picture
structures:

� draw.h

� mode.h

� vmem.h

� display.h

The master element is thedisp adapter t structure, which is used
as the “glue” that contains the individual pieces of the driver:

The following is thedisp adapter t structure:disp adapter t

@@@ddonohoe , you left a comment about" I must add some
pointers to function tables here" , anything I should worry about? :-)

typedef struct disp adapter {
int size;

void * gd ctx;
void * ms ctx;
void * mm ctx;
void * vo ctx;
unsigned reserved [8];

int irq;
uintptr t rombase;
uintptr t base [6];
unsigned long reserved1 [2];
int pci handle;
void * pci dev handle;
unsigned short pci vendor id;
unsigned short pci device id;
short pci index;

unsigned caps;
FILE * dbgfile;
int min pixel clock;
int max pixel clock;
unsigned intr sources;
char * sysram workspace;
int * sysram workspacesize;
unsigned reserved2 [4];

} disp adapter t;

60 Chapter 6 � Graphics Drivers

Writing your own driver

Each driver component has its own context block — these are
identified in the structure as ending inctx. This area is for the use of
the driver component; we don’t define these areas. This can be
particularly useful if, for example, you wish to supply multiple
components, with the components calling functions within each other.
Since thedisp adapter t is available to each component, by
placing function pointers within the context blocks this allows
immediate access to the functions from different components.

The members ofdisp adapter t are defined as follows:

size Size of this structure.

gd ctx Context block for graphics (“drawing”) drivers.

ms ctx Context block for the modeswitch function group.

mm ctx Context block for the memory manager function
group.

vo ctx Context block for the video overlay function
group.

reserved, reserved1, andreserved2

Reserved, do not examine or modify.

irq Interrupt vector used by graphics card (if card
doesn’t generate interrupts, contains the value-1).

rombase Physical address of video ROM BIOS, if present,
elseNULL.

base Array of up to six physical (PCI) base addresses.

pci handle Used internally by the display utilities; do not
modify.

pci devhandle Used internally by the display utilities; do not
modify.

Chapter 6 � Graphics Drivers 61

Writing your own driver

pci vendorid Contains the PCI Vendor Identification number.

pci deviceid Contains the PCI Device Identification number.

pci index Contains the PCI Index. Together, the three fields
pci vendorid, pci deviceid, andpci index
uniquely identify a hardware device in the system.

caps Capabilities; a bitmap of the following values:
DISP CAP MULTI MONITOR SAFE(indicating
card can work with other VGA cards in the same
system),DISP CAP 2D ACCEL (indicating 2-D
driver acceleration), andDISP CAP 3D ACCEL
(indicating 3-D driver acceleration). The
modeswitcher ORs in the multi-monitor safe flag,
if appropriate, and the other components would
OR in their own capability flags if supported.

dbgfile A FILE * (or NULL) file pointer where debugging
information gets written to. You’d use
disp perror() anddisp printf() within your driver,
and those functions would take care of getting the
debugging information into the file (if notNULL).
Note that this will slow down your driver, so it’s
best if it’s only used in extreme (or low-running)
cases.

intr sources Indicates what can cause an interrupt, bit-wise OR
of the following:DISP INTR SOURCEVSYNC
(vertical sync),DISP INTR SOURCE2D IDLE
(2-D drawing engine idle),
DISP INTR SOURCE3D IDLE (3-D drawing
engine idle), and
DISP INTR SOURCECAPTURED FRAME (a video
frame has been captured).

sysramworkspace

For use by the flat frame buffer or driver as a
scratch area in system RAM.

62 Chapter 6 � Graphics Drivers

Writing your own driver

sysramworkspacesize

Size of the scratch area insysramworkspace.

The following is thedisp draw context t structure:
disp draw context t

typedef struct disp draw context {
int size;
disp adapter t * adapter;
void * gd ctx;
struct disp draw corefuncs * cfuncs;
unsigned flags;
disp color t fgcolor;
disp color t bgcolor;
uint8 t * pat;
unsigned short pat xoff;
unsigned short pat yoff;
unsigned short pattern format;
unsigned short rop3;
unsigned short chroma mode;
disp color t chroma color0;
disp color t chroma color1;
disp color t chroma mask;
unsigned alpha mode;
unsigned s alpha;
unsigned d alpha;
unsigned alpha map width;
unsigned alpha map height;
unsigned alpha map xoff;
unsigned alpha map yoff;
unsigned char * alpha map;
disp surface t * surface
unsigned reserved [4];

} disp draw context t;

The members are defined as follows:

size Size of the structure.

adapter Pointer back to thedisp adapter t discussed
above.

gd ctx Graphics driver’s context.

cfuncs A pointer to the core functions for rendering into
the currently targetted draw surface. This surface

Chapter 6 � Graphics Drivers 63

Writing your own driver

is of the type specified by thesurfacestructure’s
pixel formatmember.

flags Selected from one or more of the following
(bitmap):DISP DRAW FLAG SIMPLE ROP,
DISP DRAW FLAG COMPLEX ROP,
DISP DRAW FLAG USE ALPHA,
DISP DRAW FLAG USE CHROMA,
DISP DRAW FLAG MONO PATTERN,
DISP DRAW FLAG TRANS PATTERN. These flags
are used to indicate what kind of operations should
be performed in all subsequent “context draw”
functions.

fgcolor The foreground colour that’s to be used.

bgcolor The background colour that’s to be used.

imagepalette List of colours used to translate a palette index into
a true colour.

imagepalettesize

Number of entries inimagepalette(above).

pat Pattern buffer; see description in “Patterns”
(above, in the “Conventions” section), as well as
the context functionsdraw rect pat8x8(), and
draw rect trans8x8().

pat xoff andpat yoff

Used to specify an offset for the pattern to cause it
to be shifted. See the section on “Patterns,” above,
for more information about patterns.

pattern format One ofDISP PATTERN FORMAT MONO 8x1 or
DISP PATTERN FORMAT MONO 8x8 (from
draw.h).

rop3 Bitmapped raster operations, range between0 and
255inclusive. See thememcpy x.c file in the flat

64 Chapter 6 � Graphics Drivers

Writing your own driver

framebuffer library source for a sample
implementation.

chromamode Selected from the following, see below, in
“Chroma mode bits”: either
DISP CHROMA OP SRC MATCH or
DISP CHROMA OP DST MATCH, and/or either
DISP CHROMA OP DRAW or
DISP CHROMA OP NO DRAW. (i.e.,SRCandDST
are mutually exclusive, as areDRAW and
NO DRAW.)

chromacolor0 Chroma key; indicates the colour to test on.

chromacolor1, chromamask

Reserved; do not examine or modify.

alpha mode Bitmask indicating alpha blending operations, see
below, in “Alpha mode bits.” For unrecognized
alpha operations, call the supplied flat frame buffer
functions.

s alpha Source alpha blending factor.

d alpha Destination alpha blending factor.

alpha map width, alpha map height

Width and height of the alpha map (below) in
pixels.

alpha map xoff, alpha map yoff

X and Y offset of the alpha map (below). See the
discussion above in “Patterns” for more
information.

alpha map The alpha mapping grid, whose size is determined
by alpha map widthandalpha map height
(above). Each element of the map is one byte,
corresponding to one pixel. IfNULL, means that

Chapter 6 � Graphics Drivers 65

Writing your own driver

there’s no alpha map. The stride here is equal to
the width, i.e., one byte per element.

surface A pointer to adisp surface t structure that
contains the definition of the currently targetted
draw surface.

reserved Reserved, do not examine or modify.

When using an alpha map, blending factors come from the
alpha map, and not from thes alphaor d alphamembers.

Chroma mode bits

The following bits apply to the chroma mode flagmode, which
performs a per-pixel test:

DISP CHROMA OP SRC MATCH

Perform match on source image.

DISP CHROMA OP DST MATCH

Perform match on destination image.

DISP CHROMA OP DRAW

If match, draw.

DISP CHROMA OP NO DRAW

If match, don’t draw.

Note thatDISP CHROMA OP SRC MATCH and
DISP CHROMA OP DST MATCH are mutually exclusive, as are
DISP CHROMA OP DRAW andDISP CHROMA OP NO DRAW.

66 Chapter 6 � Graphics Drivers

Writing your own driver

Alpha mode bits

@@@ General bits (ddonohoe sez askdrempel):

DISP ALPHA OP BLEND

This is an alpha blending operation

DISP ALPHA OP DST GLOBAL

Use the alpha in thed alphamember (Ad=dalpha)

DISP ALPHA OP SRCGLOBAL

Use the alpha in thes alphamember (As=salpha)

DISP ALPHA OP SRCPACKED

src(x) is image source (stored as alpha component of the image
data).

DISP ALPHA OP SRCMAP

src(x) is alpha map.

Alpha mode blending (source) bits

@@@ Alpha blending source factor (ddonohoe sez askdrempel):

DISP BLEND SRC ZERO

(0,0,0,0)

DISP BLEND SRC ONE

(1,1,1,1)

DISP BLEND SRC DST COLOR

(Ad,Rd,Gd,Bd)

DISP BLEND SRC ONE MINUS DST

(1,1,1,1)-(Ad,Rd,Gd,Bd)

Chapter 6 � Graphics Drivers 67

Writing your own driver

DISP BLEND SRC SRCALPHA

(As,As,As,As)

DISP BLEND SRC ONE MINUS SRC ALPHA

(1,1,1,1)-(As,As,As,As)

DISP BLEND SRC DST ALPHA

(Ad,Ad,Ad,Ad)

DISP BLEND SRC ONE MINUS DST ALPHA

(1,1,1,1)-(Ad,Ad,Ad,Ad)

Alpha mode blending (destination) bits

@@@ Alpha blending destination factor (ddonohoe sez ask
drempel):

DISP BLEND DST ZERO

(0,0,0,0)

DISP BLEND DST ONE

(1,1,1,1)

DISP BLEND DST SRCCOLOR

(As,Rs,Gs,Bs)

DISP BLEND DST ONE MINUS SRC

(1,1,1,1)-(As,Rs,Gs,Bs)

DISP BLEND DST SRCALPHA

(As,As,As,As)

DISP BLEND DST ONE MINUS SRC ALPHA

(1,1,1,1)-(As,As,As,As)

DISP BLEND DST DST ALPHA

(Ad,Ad,Ad,Ad)

68 Chapter 6 � Graphics Drivers

Writing your own driver

DISP BLEND DST ONE MINUS DST ALPHA

(1,1,1,1)-(Ad,Ad,Ad,Ad)

Thedisp surface t structure is used as an argument to severaldisp surface t

functions, and is also used within other structures (such as
disp draw context t). Here is its definition:

typedef struct disp surface {
int size;
unsigned pixel format;
unsigned offset;
unsigned char * vidptr;
unsigned stride;
unsigned flags;
int height;
int width;
disp color t * pal ptr;
int pal valid entries;
unsigned reserved [2];

} disp surface t;

The members are defined as follows:

size Size of the structure.

pixel format Defined above.

offset Device-dependent address.

vidptr Virtual address.

stride In bytes (see diagram below).

flags Surface flags, defined below.

height Height, in number of scan lines (see diagram
below).

width Width, in pixels (see diagram below).

pal ptr Pointer to the palette for this surface. If not a palette
type, this pointer isNULL.

Chapter 6 � Graphics Drivers 69

Writing your own driver

pal valid entries

Number of entries that are valid in thepal ptr
palette. This is used to limit the size of the palette
table in case only a few colours are used.

reserved Reserved, must be zero.

Relationship of stride, height, and width

The three members,stride, height, andwidthare used to define a
surface as follows:

Memory layout.

The entire content of the box represents the total memory area
available, the non-shaded portions represent the memory area that’s

70 Chapter 6 � Graphics Drivers

Writing your own driver

actually used for the surface. Note that it’s important tonot overwrite
the “not used” areas.

flags

Theflagsmember is a bitmap of the following values:

DISP SURFACEDISPLAYABLE

Surface can be displayed via CRT controller.

DISP SURFACECPU LINEAR READABLE

CPU can read this surface directly.

DISP SURFACECPU LINEAR WRITEABLE

CPU can write to this surface directly.

DISP SURFACE2D TARGETABLE

2-D engine can render into surface.

DISP SURFACE2D READABLE

Surface is read-accessible by 2-D engine.

DISP SURFACE3D TARGETABLE

3-D engine can render into surface.

DISP SURFACE3D READABLE

Surface is read-accessible by 3-D engine.

DISP SURFACEOPTIMIZED CPU ACCESS

Video memory is optimized for CPU access.

DISP SURFACEOPTIMIZED ENGINE ACCESS

Video memory is optimized for graphics engine access.

DISP SURFACEOPTIMIZED UNBIASED

Video memory is equally accessible by the CPU and the
graphics engine, or we don’t know, or care.

Chapter 6 � Graphics Drivers 71

Writing your own driver

DISP SURFACESCALER DISPLAYABLE

Surface can be displayed via video overlay scaler.

DISP SURFACEVMI TARGETABLE

Video in hardware can write frames into surface.

DISP SURFACEDMA SAFE

DMA engine can treat the surface memory as one contiguous
block.

Thedisp mode info t structure is defined as follows:disp mode info t

typedef struct disp mode info {
short size;
unsigned mode;
int xres, yres;
unsigned pixel format;
unsigned flags;
uintptr t fb addr;
unsigned fb stride;
unsigned fb size;
unsigned crtc start gran;
unsigned caps;
union {

struct {
short refresh [DISP MODENUMREFRESH];

} fixed;
struct {

int min vfreq, max vfreq;
int min hfreq, max hfreq;
int min pixel clock;
int max pixel clock;
uint8 t h granularity;
uint8 t v granularity;
uint16 t reserved0;

} generic;
} u;
unsigned reserved [6];

} disp mode info t;

The members are defined as follows:

size Size of this structure.

72 Chapter 6 � Graphics Drivers

Writing your own driver

mode Mode number.

xres, yres Display dimensions in pixels.

pixel format Frame buffer pixel format.

flags See below.

fb addr Physical address of the frame buffer.

fb stride Stride of the frame buffer (in bytes).

fb size Size of the frame buffer (in bytes).

crtc start gran Values passed in theoffsetparameter to the
devgget modefuncs()functionsetdisplayoffset()
must be a multiple of this value.

caps List of available features, see below.

fixed.refresh Array of possible refresh rates (in Hz) for this mode.

generic.minvfreq, generic.maxvfreq, generic.minhfreq,
generic.maxhfreq

Monitor limits in Hz.

generic.minpixel clock, generic.maxpixel clock

Pixel clock rates in kHz.

generic.hgranularity

Horizontal granularity; X resolution must be a
multiple of this.

generic.vgranularity

Vertical granularity; Y resolution must be a multiple
of this.

generic.reserved0, reserved

Reserved, do not examine or modify.

Chapter 6 � Graphics Drivers 73

Writing your own driver

disp mode info t flagsmember

Theflagsmember is selected from the following:

DISP MODE TVOUT

Indicates that this mode drives a TV, and not a monitor.

DISP MODE TVOUT WITH MONITOR

Indicates that this mode can drive a TV and a monitor
simultaneously.

DISP MODE TVOUT OVERSCAN

Indicates that the overscan goes beyond the edge of the TV (i.e.,
there are no borders at the edges).

DISP MODE TVOUT NTSC

Indicates that this mode generates NTSC format video signal.

DISP MODE TVOUT PAL

Indicates that this mode generates PAL format video signal.

DISP MODE TVOUT SECAM

Indicates that this mode generates SECAM format video signal.

Note that there’s a macro,DISP TVOUT STANDARD()that’s used to
return just the type of output (PAL, NTSC, SECAM).

disp mode info t capsmember

And thecapsmember:

DISP MCAP SET DISPLAY OFFSET

The display controller can point to different areas of the video
RAM. This indicates that its offset into video RAM is not
“hard-coded” meaning that it can perform double-buffering
operations.

74 Chapter 6 � Graphics Drivers

Writing your own driver

DISP MCAP DPMS SUPPORTED

Display supports DPMS (if this bit set), else no support.

disp mode info t modenum member

And themodenummember:

DISP MODE NUM REFRESH

Returns the size of therefreshmember (i.e., maximum number
of refresh rates supported for a given mode).

The following is the definition for thedisp crtc settings t
disp crtc settings t structure, which contains the CRT Controller (CRTC) settings:

typedef struct disp crtc settings {
short xres;
short yres;
uint8 t h granularity;
uint8 t v granularity;

short refresh;
unsigned pixel clock;

uint8 t sync polarity;

short h total;
short h blank start;
short h blank len;
short h sync start;
short h sync len;

short v total;
short v blank start;
short v blank len;
short v sync start;
short v sync len;

unsigned flags;

unsigned reserved [8];
} disp crtc settings t;

Chapter 6 � Graphics Drivers 75

Writing your own driver

With the members defined as follows (note that theh granularity,
v granularity, pixel clock, syncpolarity, h total, h blank start,
h blank len, h syncstart, h synclen, v total, v blank start,
v blank len, v syncstart, andv synclenmembers are used in
conjunction with “generic” modes only (with therefreshmember
applicable to both generic and fixed modes); see theget modelist()
function in the section ondevgget modefuncs(), above, for more
information):

xres, yres Horizontal and vertical resolution, respectively, in
pixels.

h granularity, v granularity

Horizontal and vertical granularity; X and Y
resolutions must be multiples of these
(respectively).

refresh Refresh rate (in Hz)

pixel clock Pixel clock rate (in kHz)

syncpolarity See below.

h total, h blank start, h blank len, h syncstart, h synclen
Detailed monitor timings indicating the horizontal
total, blanking start, length of blanking, horizontal
sync start and length; given in units of pixels.

v total, v blank start, v blank len, v syncstart, v synclen
Detailed monitor timings indicating the vertical
total, blanking start, length of blanking, horizontal
sync start and length; given in units of lines.

flags There are currently no flags defined.

reserved Reserved, do not examine or modify.

76 Chapter 6 � Graphics Drivers

Utility Functions

The sync polarity member

The values defined forsyncpolarity consist of none, one, or both of
the following bits:

DISP SYNC POLARITY V POS

Vertical synchronization is indicated by a positive signal if this
bit is on, else negative.

DISP SYNC POLARITY H POS

Horizontal synchronization is indicated by a positive signal if
this bit is on, else negative.

Or, you can use the following manifest constants (composed of the
bits from above):

DISP SYNC POLARITY NN

Both synchronization signals are negative.

DISP SYNC POLARITY NP

Horizontal negative, vertical positive.

DISP SYNC POLARITY PN

Horizontal positive, vertical negative.

DISP SYNC POLARITY PP

Both synchronization signals are positive.

Utility Functions

The following sets of utility functions can be useful when writing
graphics drivers:

� display driver utilities

Chapter 6 � Graphics Drivers 77

Utility Functions

� PCI configuration access utilities

� memory manager utilities

� video memory management utilities

These functions are provided in thedisputil (display utilities)
library.

The following functions are provided in the display driver utilities set:Display driver
utilities

� disp registeradapter()

� disp unregisteradapter()

� disp acquirevga resources()

� disp releasevga resources()

� disp perror()

� disp printf()

� disp usecspin()

int disp register adapter (disp adapter t * adapter)

Registers with the display utilities libraries. This call performs things
like the calibration of timers.

int disp unregister adapter (disp adapter t * adapter)

Frees any resources allocated by the preceeding
disp registeradapter()function call, above.

int disp acquire vga resources(disp adapter t * adapter)

Acquires access to the VGA registers; you must call thisbefore
activating any of the VGA registers.

78 Chapter 6 � Graphics Drivers

Utility Functions

int disp release vga resources(disp adapter t * adapter)

Opposite ofdisp acquirevga resources(), you would call this when
you are done with the VGA registers. You must de-activate the card’s
response to VGA cycles before this function is called.

void disp perror (disp adapter t * adapter, char * what)

Prints the string given bywhatalong with the string interpretation of
the globalerrno to the graphics framework’s debug port (as given in
theadaptermemberdbgfile). Functions similarly to the standard C
library’s perror() function.

void disp printf (disp adapter t * adapter, const char
* fmt, ...)

Prints the given string (starting with thefmt parameter and any
additional parameters specified) to the graphics framework’s debug
port (as given in theadaptermemberdbgfile). Functions similarly to
the standard C library’sprintf()/fprintf() functions.

void disp usecspin(unsigned usecs)

Busy waits for at leastusecsµs. While polling is generally
discouraged in a realtime operating system, sometimes the hardware
demands that registers be accessed only after a certain (small) delay.
Therefore, use this function only ifabsolutelynecessary — since the
graphics drivers usually run at a priority higher than “normal” user
processes, this could have a direct, negative impact on the scheduling
latency for normal user processes.

The following functions are provided in the PCI configuration accessPCI configuration
access utilities utilities set:

� disp pci init()

� disp pci shutdown()

Chapter 6 � Graphics Drivers 79

Utility Functions

� disp pci read config()

� disp pci write config()

� disp pci dev find()

� disp pci dev read config()

� disp pci dev write config()

� disp pci info()

int disp pci init (disp adapter t * adapter, unsigned
flags)

Performs apci attachdevice()using thepci vendorid, pci deviceid,
andpci indexmembers of theadapterstructure. For a description of
theflagsargument, see thepci attachdevice()manpage.

int disp pci shutdown (disp adapter t * adapter)

Effectively callspci detach()to release the resources from a previous
disp pci init() function, above.

int disp pci read config (disp adapter t * adapter,
unsigned offset, unsigned cnt, size t size, void * bufptr)

PCI configuration registers can be byte, word, or double-word. This
function reads a PCI configuration register (or registers ifcountis
greater than one), as given byoffsetandsize, into the data area given
by bufptr. See thepci read config()function for details on the return
values.

int disp pci write config (disp adapter t * adapter,
unsigned offset, unsigned cnt, size t size, void * bufptr)

Writes a PCI configuration register (or registers ifcountis greater
than one), as given byoffsetandsize, from the data area given by

80 Chapter 6 � Graphics Drivers

Utility Functions

bufptr. See thepci write config()function for details on the return
values.

int disp pci dev find (unsigned devid, unsigned venid,
unsigned index, unsigned * bus, unsigned * devfunc)

Similar topci find device()— this function discovers a device’sbus
anddevfuncvalues in order to let a driver talk to a PCI device other
than the one specified in thedisp adapter t structure.

int disp pci dev read config (unsigned bus, unsigned
devfunc, unsigned offset, unsigned cnt, size t size, void
* bufptr)

This function reads a PCI configuration register (like
disp pci read config(), above, but from a specificbusand device
(devfunc)). Error return codes are documented inpci read config().

int disp pci dev write config (unsigned bus, unsigned
devfunc, unsigned offset, unsigned cnt, size t size, void
* bufptr)

This function writes a PCI configuration register (like
disp pci write config(), above, but to a specificbusand device
(devfunc)). Error return codes are documented inpci write config().

int disp pci info (unsigned * lastbus, unsigned * version,
unsigned * hardware)

Cover function forpci present().

The following functions are provided in the memory manager utilitiesMemory manager
utilities set:

� disp mmapdevicememory()

� disp mmapdeviceio()

Chapter 6 � Graphics Drivers 81

Utility Functions

� disp munmapdevicememory()

� disp physaddr()

� disp alloc dmasafe()

� disp free dmasafe()

void * disp mmap device memory (paddr t base, size t len,
int prot, int flags)

Creates a virtual address space pointer to the physical address given in
base, which islenbytes in length. Theprot parameter is selected from
one or more of the following bitmapped flags:

DISP PROT READ

Allow read access.

DISP PROT WRITE

Allow write access.

DISP PROT NOCACHE

Do not cache the memory (useful for register access, for
example).

DISP MAP LAZY

Allows CPU to delay writes, and combine them into burst
writes for performance. Ideal for mapping frame buffers (Intel
calls it “write combining”). On CPUs that don’t support this
feature, the flag is ignored.

Theflagsparameter is0 or the constantDISP MAP BELOW16M
(indicating that the memory must lie within the first 16 megabytes of
physical address space).

82 Chapter 6 � Graphics Drivers

Utility Functions

unsigned long disp mmap device io (size t len, paddr t
base)

Creates either a virtual address space pointer (like
disp mmapdevicememory(), above, or returns its argumentbase. A
virtual address space pointer is returned on non-x86 architectures
(because these don’t have a separate “I/O” space), whereas the
argumentbaseis returned unmodified on x86 architectures.
Regardless of the architecture, the return value can be used with
functions likein8(), out8(), etc.

void disp munmap device memory (void * addr, size t len)

Invalidates (“unmaps”) the virtual address pointer inaddr.

paddr t disp phys addr (void * addr)

Returns the physical address corresponding to the virtual address
passed inaddr. This call is useful with devices that use DMA (which
must be programmed with the physical address of the transfer area).
Note that thepaddr t physical address is only valid for a maximum
of PAGESIZEbytes (i.e., from the physical address corresponding to
the passed virtual address up to and including the end of the page
boundary). For example, ifPAGESIZEwas4096(0x1000), and the
virtual address translated to a physical address of0x7B000100, then
only the physical address range0x7B000100through to0x7B000FFF
(inclusive) would be valid.

void * disp alloc dmasafe(int size, unsigned prot,
unsigned flags)

Creates a virtual address pointer to an area somewhere in memory that
conforms to thesize, prot andflagsparameters that is guaranteed to be
safe to use with a DMA controller on the particular architecture. This
implies that the data area is physically contiguous, and is addressable
by the DMA controller. Thesize, prot andflagsparameters are the
same as those passed todisp mmapdevicememory()above.

Chapter 6 � Graphics Drivers 83

Utility Functions

Note that you don’t supply abaseparameter as with the other
mapping function; instead, this function finds a free block of memory
(called “anonymous” memory) and allocates it.

void disp free dmasafe(void * addr, int size)

Invalidates the virtual address pointer inaddr and deallocates the
memory.

The following functions are provided in the video memoryVideo memory
management

utilities
management utilities set:

� disp vm alloc surface()

� disp vm free surface()

� disp vm surfaceinfo()

� disp vm memavail()

� disp vm walk surfacelist()

� disp vm createpool()

� disp vm destroypool()

Your driver must supply these functions; at a bare minimum your
driver’s versions of these functions should simply call the provided
library entry points.

disp sid t disp vm alloc surface (disp vm pool t * pool,
int width, int height, unsigned format, unsigned flags,
void * user info)

Allocates a surface from the pool of surfaces. If successful, the
surface memory returned conforms to theflagsandformat
parameters. If a surface can’t be found that matches those
requirements,NULL is returned. Note that the surface memory is
identified by a handle (the return parameter, of typedisp sid t).

84 Chapter 6 � Graphics Drivers

Utility Functions

Use thedisp vm surfaceinfo() function (below) to get information
about the surface. Thepoolparameter that you pass in is the return
value from thedisp vm createpool() function (below) — this implies
that you must first create the pool before using it.

Theflagsparameter is selected from the set of manifest constants
defined in theflagsargument for thedisp surface t data type,
above.

Theformatparameter is selected from the set of manifest constants
beginning withDISP SURFACEFORMAT * and is documented above,
under the description fordevgget corefuncs().

int disp vm free surface (disp adapter t * adapter,
disp sid t sid)

Releases the surface memory identified bysid back to the surface
memory manager’s pool.

int disp vm surface info (disp adapter t * adapter,
disp sid t id, disp surface t * surf, void ** user info)

If surf is notNULL, returns information about the surface identified
by id into thedisp sid t pointed to bysurf. If user info is not
NULL, this function puts whatever value was supplied (in the
user info parameter) when the surface was created (via
disp vm alloc surface</()) back into theuser info.

unsigned long disp vm mem avail (disp vm pool t * pool)

Returns how much memory is available in the pool identified bypool,
in bytes.

int disp vm walk surface list (disp vm pool t * pool, int
(* callback) (disp adapter t *, disp sid t))

Chapter 6 � Graphics Drivers 85

Utility Functions

The function is used to iterate across the list of surfaces associated
with pool. The function returns a-1 in case of an (internal) error, else
0 to indicate success.

The user-supplied callback functioncallback()will be invoked for
each surface inpoolwith a disp adapter t pointer and a surface
id. The return values from the user-supplied callback function are-1 to
stop walking, and0 otherwise (positive values are currently reserved).

disp vm pool t * disp vm create pool (disp adapter t
* adapter, disp surface t * surf, int bytealign)

Used to create a new memory pool for the memory manager. You
pass theadapterassociated with this memory pool, a pointer to the
surface insurf, and a byte alignment parameter,bytealign. The
bytealignparameter indicates the alignment for the memory manager
— all chunks of memory returned by the memory manager for this
pool will be aligned to the number of bytes specified.

The return value is adisp vm pool t pointer (effectively a
“handle”) which can be used with the otherdisp vm *() functions.

int disp vm destroy pool (disp adapter t * adapter,
disp vm pool t * pool)

Reallocates all surfaces and releases the resources associated with
tracking the pool allocation.

The following functions are provided in the graphics helper utilitiesGraphics helper
utilities set:

� Core functions:

- ffb core blit1()

- ffb core blit2()

- ffb draw span8(), ffb draw span16(), ffb draw span24(),
andffb draw span32()

86 Chapter 6 � Graphics Drivers

Utility Functions

- ffb draw spanlist 8(), ffb draw spanlist 16(),
ffb draw spanlist 24(), andffb draw spanlist 32()

- ffb draw solid rect 8(), ffb draw solid rect 16(),
ffb draw solid rect 24(), andffb draw solid rect 32()

- ffb draw line pat8x18(), ffb draw line pat8x116(),
ffb draw line pat8x124(), andffb draw line pat8x132()

- ffb draw line trans8x18(), ffb draw line trans8x116(),
ffb draw line trans8x124(), andffb draw line trans8x132()

- ffb draw rect pat8x88(), ffb draw rect pat8x816(),
ffb draw rect pat8x824(), andffb draw rect pat8x832()

- ffb draw rect trans8x88(), ffb draw rect trans8x816(),
ffb draw rect trans8x824(), andffb draw rect trans8x832()

� Context functions:

- ffb ctx draw span()

- ffb ctx draw spanlist()

- ffb ctx draw rect()

- ffb ctx blit()

� Draw state update notify functions:

- ffb updatedraw surface()

- ffb updatepattern()

- ffb ctx updategeneral()

- ffb ctx updatefg color()

- ffb ctx updatebg color()

- ffb ctx updaterop3()

- ffb ctx updatechroma()

- ffb ctx updatealpha()

� Colour space conversion utility:

- ffb color translate()

� Miscellaneous

Chapter 6 � Graphics Drivers 87

Utility Functions

- ffb wait idle()

- ffb setdraw surface()

� Draw function retrieval routines:

- ffb get miscfuncs()

- ffb get corefuncs()

- ffb get contextfuncs()

The assumption with these functions is that you’ll use them during the
creation of your driver. For example, you may start out with a driver
that doesn’t actually do very much, and instead relies upon the
functionality of these routines to perform the work. As you progress
in your development cycle, you’ll most likely take over more and
more functionality from these functions and do them in a card specific
manner (e.g., using the hardware acceleration).

In general, this can be done quite simply by taking the function table
pointer that’s passed to you in your initialization function, and calling
the appropriate function (one of the three supplied functions
ffb get corefuncs(), ffb get contextfuncs(), andffb get miscfuncs()) to
populate your function table array with the “defaults” from this
library. Note, however, thatall functions in the library are exposed;
you donot have to bind to them by way of theffb get *() functions;
you can just simply link against them.

The next step in the development cycle would be to take over some of
the functions, and follow the outlines discussed above for each of
them. If you find that you’re able to support a given operation in a
card specific manner, you’d demultiplex that case out of the function
call and handle it, while relying on the library routines to perform
functions that your hardware doesn’t support or that you don’t wish to
write the code for right at that point. Since the supplied libraries are
hardware independent (i.e., everything is implemented in software),
they’ll be (from “somewhat” to “much”) slower than your
hardware-accelerated versions.

Another advantage of the way that the library and graphics framework
are structured is that in case your driver becomes out-of-date (i.e., a

88 Chapter 6 � Graphics Drivers

Utility Functions

newer version of the graphics framework has been released which has
more functions), the shared library that’s supplied with the newer
version will know how to handle the extra functions, without any
additional intervention on your part. You may then release a new
version of your driver that supports accelerated versions of the extra
function(s) at your convenience.

Note that there are four sets of functions for some of the core
functions supplied, optimized based on the pixel depth. For example,
instead of the “expected” single functionffb draw span(), there are in
fact four of them:

1 ffb draw span8()

2 ffb draw span16()

3 ffb draw span24()

4 ffb draw span32()

Which specific one gets bound to theffb draw span()function pointer
in the core functions array (disp draw corefuncs t type)
memberdraw spandepends on thepixel formatargument passed to
ffb get corefuncs()(below).

The other functions (that aren’t listed as having 8/16/24/32 bit
pixel-depth variants) support all pixel depths.

The impact on your driver is that you may choose to call the
ffb get corefuncs()four times, (once for each colour depth), and fill
four separate arrays, or you may choose to call it wheneveryour
get corefuncs()call-in is called, so that you can dynamically bind the
appropriate library routines. Theget corefuncs()call-in gets called
very infrequently (only during initialization and modeswitch
operations) so efficiency isn’t paramount in this case.

☞

Chapter 6 � Graphics Drivers 89

Utility Functions

int ffb get miscfuncs(disp adapter t * context,
disp draw miscfuncs t * funcs, int tabsize)

This function is used to populate the passedfuncspointer to function
pointer table with the miscellaneous functions from the flat frame
buffer library.

int ffb get corefuncs (disp adapter t * context, unsigned
pixel format, disp draw corefuncs t * funcs, int tabsize)

This function is used to populate the passedfuncspointer to function
pointer table with the core functions from the flat frame buffer library.

int ffb get contextfuncs(disp adapter t * context,
disp draw contextfuncs t * funcs, int tabsize)

This function is used to populate the passedfuncspointer to function
pointer table with the context functions from the flat frame buffer
library.

disp color t ffb color translate (disp draw context t
* context, int srcformat, int dstformat, disp color t color)

Takes thecolor that corresponds to the surface type specified by
srcformat, and returns adisp color t that corresponds to the same
(or closest available) colour in the surface type specified bydstformat.

Note that it’s not always possible to get an exact match — for
example, if the source surface was a 24 bits-per-pixel type, (e.g.
DISP SURFACEFORMAT RGB888) and the destination had less
colours (e.g.DISP SURFACEPAL8), then the colour returned would
be a “closest match” to that available on the destination surface.

90 Chapter 6 � Graphics Drivers

PETE – Photon 1.XX drivers

PETE – Photon 1.XX drivers

Pete’s gonna describe how the 1.XX drivers relate to the
“new-and-improved” 2.00 driver structure described herein.

PETE – New API features

Pete’s gonna describe stuff here that’s new; like offscreen memory
usage (linear vs rectangular).

Chapter 6 � Graphics Drivers 91

Chapter 7

Input Devices

In this chapter. . .
Input drivers
Writing an input driver

Chapter 7 � Input Devices 93

Input drivers

Input drivers

This chapter provides an overview of writing input device drivers for
Neutrino. Use this document along with the code in the sample
directory.

The following is a brief overview of how the input driver framework
functions. The input driver consists of two components, a group of
input modules and a library used in manipulating these modules. At
run time modules are linked together to form a data path used to
gather data from an input device, process it, and output it to the
system. There are three types of modules, device modules, protocol
modules and filter modules. They are typically organized as follows:

Input chain.

When modules are linked together, they form an “event bus line.”
Data passes from an input device up the event bus line and out to the
system. There are three different types of event bus lines:

� relative

� absolute

� keyboard

The term “relative” simply means that the device provides positionTypes of event bus
lines data that is relative to the last location it reported. This is typically the

method that mouse-type pointing devices use.

An “absolute” bus line is used with devices that provide position data
at absolute coordinates. An example of this is a touchscreen.

Chapter 7 � Input Devices 95

Input drivers

Finally, a “keyboard” type of bus line is one in which some sort of
keypad device provides codes for every key press and release.

A device layer module is responsible for communicating with aModules
hardware or software device. It typically has no knowledge of the
format of the data from the device; it’s only responsible for getting
data. A protocol layer module interprets the data it gets from a device
module according to a specific protocol.

A filter module provides any further data manipulation common to a
specific class of event bus.

Modules are linked together according to the command line
parameters passed into the input driver. The command line has the
following format:

devi -driver name [options] protocol [protocol options] [device [device options]]

In this example:

devi -hirun ps2 kb -2 &

hirun the hirunner input driver, which contains mouse and
keyboard drivers used in most desktop systems.

ps2 specifies the PS/2 mouse protocol, a three byte protocol
indicating mouse movement and button states.

kb specifies thekb device module, which can communicate
with a standard PC 8042-type keyboard controller.

-2 specifies an option to thekb module, telling it to set up
communication to its second (or auxilliary) port, which is
for a PS/2 mouse.

Specifying a filter module isn’t necessary because the three classes of
event bus lines are represented by three modules, calledrel , abs ,

96 Chapter 7 � Input Devices

Input drivers

andkeyboard . When the input driver parses the command line, it
can tell from theps2 module that it needs to link in therel

filter-module. The only time you would specify a filter module on the
command line is if you need to pass it optional command line
parameters, for example:

devi -hirun ps2 kb -2 rel -G2

This tells the relative filter module to multiplyX andY coordinates by
2, effectively providing a gain factor (a faster-moving mouse).

After data has passed from the input device up the event bus line toInterface to the
system the filter module, it’s passed to the system. There are currently two

interfaces to the system:

Photon interface

This requires that the Photon server is running. It passes data
from the input to Photon via raw system events. Keyboard data
is given by raw keyboard events, while relative and absolute
data is given by raw pointer events. See the Photon docs to get
more info on Photon events.

Resource manager interface

This interface establishes a pathname under the/dev directory,
which can be read by applications to get input data. For
example, a relative event bus line would be represented by the
file /dev/mouse0 . Reading from/dev/mouse0 would
provide pointer packets, as defined in<sys/dcmd input.h> .
Multiple opens are allowed, and device files can be opened in
blocking or non-blocking mode, with I/O notification (i.e.
select(), ionotify()) supported.

The default interface started by the input system is the Photon
interface. Unless you have a need to run input drivers without Photon,
you’ll never need to use the resource manager interface. The resource
manager interface is started by passing the-r option to thedevi -*

Chapter 7 � Input Devices 97

Input drivers

driver. The Photon interface can be disabled by passing the-P option
to thedevi -* driver.

The input (ordevi -* source base is organized as follows:Source file
organization for

devi -* devi
|

+=======+===+===+=====+
| | | |

lib hirun sample elo

The lib directory contains “glue” code used by all drivers. It
contains the command line parsing code, the code used to manipulate
modules and event bus lines, the code for the photon and resmgr
interfaces, as well as the filter modules (rel , abs , andkeyboard).
In addition, thelib directory also contains functions used by
modules to request services of the input system (e.g. for attaching
interrupts and pulse handlers, mapping device I/O space, etc.)

It’s recommended that you do not change anything in thelib

directory. The source code is there simply to aid in understanding and
debugging. The implementation of it could change internally at any
time, although the interfaces used by the modules will not change.

Thehirun directory is an example of an actual input driver,
devi -hirun . In this directory, you’ll find various device and
protocol modules.

Theelo directory contains source for the “ELO” touchscreen drivers.

When writing your own input driver, you would create your own
directory and put your new input modules there.

98 Chapter 7 � Input Devices

Writing an input driver

Writing an input driver

To write an input driver, you must create your own input module. The
sample directory contains a sample skeleton for creating a module.
We recommend that you use this as a starting point.

A module is represented by a data type calledinput module t . It
contains various data fields and function pointers representing its
interface. Writing an input module consists of simply creating an
input module t representing your module and filling in the
relevant interface functions.

The code in the sample directory provides tons of comments detailing
the steps required to initialize your module, and what to put in your
module’s functions.

The modulesamp dev is an example of a device module. The
modulesamp proto is the MS mouse protocol code with lots of
comments. TheREADMEfile in the sample directory also talks about
writing a combination device/protocol module. This case is very
common when writing input drivers for embedded systems.

In addition, theREADMEfile also provides further background info on
how the system processes data fromkeyboard andabsolute

devices.

Chapter 7 � Input Devices 99

Chapter 8

Media Players

In this chapter. . .
Media Players
Using the supplied plugins — writing your own player
Writing your own media plugin

Chapter 8 � Media Players 101

Media Players

Media Players

This chapter describes the media player plugins in detail.

A media player plugin(or just “plugin”) is either a separate process,
or a DLL, that is responsible for handling a particular type of medium.
By “handling” we mean performing a series of functions so that a
high-level (perhaps GUI-based) program can simply do functions like
“play a DVD movie,” or “play an audio track” from the media.

In this chapter, we’ll look at both how you’d use the existing
QNX-supplied plugins, as well as how you’d write your own.

@@@ more stuff here about the general case. . .

Using the supplied plugins —
writing your own player

We provide a number of plugins that you can write your own players
for:

� DVD player

� MPEG audio player

� MPEG video player

� Audio player (for non-MPEG audio, e.g..wav)

� CD audio player

While these plugins are all different, at the highest level they share the
following characteristics:

� the player loads them as a shared object (DLL)

� an initialization function is provided

Chapter 8 � Media Players 103

Writing your own media plugin

� several command processing functions are provided

� common data structures are used

Writing your own media plugin

In this section, we’ll see the steps that you need to take to write your
own plugin module. By implication, you’ll be able to use this
information to use an existing plugin with your own “player” program
by calling the functions defined in the plugin, just likephplay does.

Your plugin (in the simplest case) is a DLL that exports one visibleBinding to the
player symbol:

#include <sys/Mv.h>

MvInitF t MvInit;

TheMvInitF t is a pointer to a function that has the following
prototype:

int
MvInit (MvPluginCtrl t * pctrl);

When the player loads your DLL, it will search for the symbol
MvInit, and will then call it with thepctrl variable. Thispctrl variable
is effectively the “handle” that gets used for all communications
between your DLL and the player.

TheMvPluginCtrl t structure is defined as follows:MvPluginCtrl t

typedef struct MvPluginCtrl
{

// set by the plugin
MvPluginData t * pdata;
MvPluginFunctions t * calls;

104 Chapter 8 � Media Players

Writing your own media plugin

MvPluginFlags t pflags;
unsigned nhotkeys;
MvPluginHotkey t * hotkeys;

// set by the player
MvSetup t setup;
MvViewerCallbackF t * cb;
void * dll handle;
char * name;
unsigned version;
unsigned APIversion;

} MvPluginCtrl t;

The top set of elements is filled in by the plugin when itsMvInit()
function gets called, whereas the bottom set of elements is provided
by the player.

The fields are defined as follows:

pdata A pointer to aMvPluginData t data type, see
below.

calls A pointer to aMvPluginFunctions t data type,
see below.

pflags

nhotkeys

hotkeys

setup

cb A pointer to aMvViewerCallbackF t function, see
below.

dll handle

name

version

APIversion

Chapter 8 � Media Players 105

Writing your own media plugin

This data structure is supplied by the plugin itself, and is used to keepMvPluginData t

track of whatever context and state information the plugin wishes to
use. There are no restrictions or definitions of its content.

MvPluginFunctions t
typedef struct MvPluginFunctions
{
void (* terminate) (MvPluginCtrl t *pdata);
MvMediaInfo t *(* get item) (MvPluginCtrl t *pdata, MvMediaInfoFlag t
int (* command) (MvCommandData t *cmdData);
} MvPluginFunctions t;

Each plugin must supply the three functions listed in the table.

terminate() Called by the player to terminate your plugin. Your
plugin should clean up after itself (free up any
resources it may have allocated, quiesce the
hardware, etc.) Note that if your plugin is a DLL
that’s loaded into the player, then your plugin must
not call exit()— this will take down the entire
process, which of course includes the player! It’s up
to the player to unload your plugin DLL from itself,
this is not something that you need worry about.

get item() Used to fetch an item from the plugin, based on the
whichparameter and theindex, see below.

command() This is the primary command interface to your
plugin. By calling this function, with thecmdData
parameter, the player is requesting that your plugin
perform some kind of function. The function codes
and their corresponding parameters are documented
below.

106 Chapter 8 � Media Players

Writing your own media plugin

command() function commands

The following commands are defined for thecommand()function that
your plugincanhandle — not all commands apply to all plugins, of
course (e.g.,CMD PLUGIN SELECTSUBTITLE has no meaning to a
pure audio plugin).

CMD PLUGIN OPENURLS

This is usually the first command given to a plugin, and gives it
the URL of the item to act upon.

CMD PLUGIN CLOSE

Tells the plugin that the player is finished with the URL that
was opened viaCMD PLUGIN OPENURLS. The plugin should
discontinue rendering the item.

CMD PLUGIN START

Begins rendering the item (e.g., for an audio wave file, this
command will begin playing the audio file; for an MPEG video,
this command will begin displaying the video and playing the
associated audio track).

CMD PLUGIN PAUSE

Pauses the current rendering operation.

CMD PLUGIN STOP

Stops the current operation, but does not close the item.

CMD PLUGIN SEEK TO

Moves the current position within the item to a new location.

CMD PLUGIN SEEK RELATIVE

Selects a different item (for example, on an audio CD, this
would be used to select a different track for playing).

CMD PLUGIN SET PARAMETER

ReferencesMvPlaybackParams t to indicate a parameter that
should be adjusted.

Chapter 8 � Media Players 107

Writing your own media plugin

CMD PLUGIN SET WINDOW

CMD PLUGIN SET STOPTIME

Not implemented.

CMD PLUGIN DISPLAY GUI

Tells plugin to update its GUI.

CMD PLUGIN GET STATUS

Query plugin as to current position within item (e.g., on an
audio item, this tells us the current position within a track)

CMD PLUGIN HOTKEY

Not implemented.

CMD PLUGIN EJECTDISK

Bring on the dancing bears of “duh!”

CMD PLUGIN LOAD DISK

Opposite ofCMD PLUGIN EJECTDISK (i.e., send the dancing
bears of “duh” away).

CMD PLUGIN SELECT

DVD player, corresponds to buttons (JBoucher).

CMD PLUGIN SELECT UP

DVD player, corresponds to buttons (JBoucher).

CMD PLUGIN SELECT DOWN

DVD player, corresponds to buttons (JBoucher).

CMD PLUGIN SELECT RIGHT

DVD player, corresponds to buttons (JBoucher).

CMD PLUGIN SELECT LEFT

DVD player, corresponds to buttons (JBoucher).

108 Chapter 8 � Media Players

Writing your own media plugin

CMD PLUGIN SELECT AUDIO

DVD player, corresponds to buttons (JBoucher).

CMD PLUGIN SELECT SUBTITLE

DVD player, corresponds to buttons (JBoucher).

CMD PLUGIN MENU

DVD player, corresponds to buttons (JBoucher).

CMD PLUGIN ANGLE

DVD player, corresponds to buttons (JBoucher).

CMD PLUGIN DIRECT AUDIO

DVD player, corresponds to buttons (JBoucher).

CMD PLUGIN SET SPEED

DVD player, corresponds to buttons (JBoucher).

CMD PLUGIN BOOKMARK SET

DVD player, corresponds to buttons (JBoucher).

CMD PLUGIN BOOKMARK GOTO

DVD player, corresponds to buttons (JBoucher).

CMD PLUGIN BOOKMARK VIEW

DVD player, corresponds to buttons (JBoucher).

CMD PLUGIN KARAOKE MIX

DVD player, corresponds to buttons (JBoucher).

CMD PLUGIN KARAOKE RECORD

DVD player, corresponds to buttons (JBoucher).

CMD PLUGIN PLAY ALL FRAMES

DVD player, corresponds to buttons (JBoucher).

CMD PLUGIN PLAY REALTIME

DVD player, corresponds to buttons (JBoucher).

Chapter 8 � Media Players 109

Writing your own media plugin

CMD PLUGIN RESERVED0 throughCMD PLUGIN RESERVED9
Reserved for future expansion.

CMD PLUGIN USER 0 throughCMD PLUGIN USER 9

Reserved for custom commands for plugins; these will vary
wildly between plugins. We do not enforce any particular
meaning for these, nor will we ever invoke them from the
standardphplay player. The idea here is that if you are writing
both the player and the plugin, you can agree on some useful
extensions.

The function that’s supplied by the player is stored in theMvViewerCallbackF t()
MvPluginCtrl t data structure’scbmember. When the player calls
you with a command to perform (via yourcommand()function
pointer from theMvPluginFunctions t data structure that you
supplied), you are expected to perform the command, and then call
the callback function with the status.

Here’s the prototype for the callback function:

typedef void
MvViewerCallbackF t (MvPluginCtrl t * ctrl,

MvEventFlags t change,
MvPluginStatus t const * status);

The members are as defined below:

ctrl This is the handle that was passed to the plugin during
the initialization phase. Simply pass this back, as it’s
used by the player to track this particular request.

change A bitmap of flags (see below) indicating which
parameters in theMvPluginStatus t parameter (the
statusargument) are indeed valid.

status A structure that contains a number of members, as
defined below, that your plugin will fill in with the
required information. The plugin will then set the flags in

110 Chapter 8 � Media Players

Writing your own media plugin

thechangemember to indicate which of the fields within
thestatusstructure are valid as a result of the call.

The MvViewerCallbackF t changeflag

The following table indicates the correspondance between the flags
(of typeenum MvEventFlags) passed in thechangeargument and
the various fields of thestatusstructure. Note that the flags are
individual bits, and can be OR’d together in case multiple fields are
valid.

Flag Member

MVS PLUGIN STATE state

MVS FLAGS flags

MVS MEDIA mediainfo

MVS POSITION position

@@@ duration

MVS VPSIZE vpsize

MVS ERRORMSG errormsg

MVS VIDEO WND TITLE videoWndTitle

MVS DISPLAY INFO displayInfo

MVS AUDIO LIST audioList

MVS SUBTITLE LIST subtitleList

MVS UPDATE GUI @@@

Chapter 8 � Media Players 111

Chapter 9

Network Drivers

In this chapter. . .
Network Drivers
Writing your own driver
The details

Chapter 9 � Network Drivers 113

Network Drivers

Network Drivers

REVISION 00 06 12 09 30

Neutrino’s network subsystem consists of a process, calledio -net ,
that loads a number of DLLs. Each DLL provides one or more of the
following types of service:

up producer produces data for a higher level (e.g., an ethernet
driver provides data from the network card to a
TCP/IP stack)

down producer

produces data for a lower level (e.g., the TCP/IP
stack produces data for an ethernet driver)

up filter a filter that sits between an up-producer and the
bottom end of a convertor (e.g., a protocol sniffer)

down filter a filter that sits between a down-producer and the
top end of a convertor (e.g., NAT)

convertor converts data from one format to another (e.g.,
between IP and Ethernet)

Note that these terms are relative toio -net and do not encompass
any non-io -net interactions. For example, a network card driver
(while forming an integral part of the communications flow) is viewed
only as an “up producer” as far asio -net is concerned — it doesn’t
produceanything thatio -net interacts with in the “down-going”
direction, even though it actually transmits the data originated by an
upper module to the hardware.

This chapter will focus on the creation of device drivers (e.g. for a
network card). We’ll take a look at:

� the big picture; what all the pieces are

� lifecycle of a packet

Chapter 9 � Network Drivers 115

Network Drivers

From the command line, when you startio -net , you tell it whichThe big picture
protocols to load:

$ io -net -del900 verbose -pttcpip if=en0:11.2 &

This would causeio -net to load thedevn -el900 ethernet driver,
and the tiny TCP/IP protocol stack. The “verbose ” and
“ if=en0:11.2 ” options are “suboptions” passed to the individual
components.

Alternatively, you can also use themount andumount commands to
start and stop modules dynamically. The previous example could be
rewritten as:

$ io -net &
$ mount -Tio -net -overbose devn -el900.so
$ mount -Tio -net -oif=en0:11.2 @@@TCPIP@@@

Regardless of the way that you’ve started it, here’s the “big picture”
that results:

Big picture of io-net.

In the diagram above, we’ve shownio -net as the “largest” entity.
This was done simply to indicate thatio -net is responsible for

116 Chapter 9 � Network Drivers

Network Drivers

loading all the other modules (as DLLs), and that it’s the one that
“controls” the operation of the entire protocol stack.

The TCP/IP stack is at the top of the hierarchy, as it presents a
user-accessible interface. A user would typically use the socket
library function calls to access the exposed functionality. (The
mechanism used by the TCP/IP stack to present its interface is not
defined byio -net — it’s a private interface thatio -net has no
knowledge of or control over.)

The TCP/IP stack, however, depends on an IP module that knows how
to handle the IP protocol (in terms of converting IP to Ethernet and
vice-versa, and routing information to/from an appropriate Ethernet
module). The IP module sends packets down to the Ethernet driver
(and receives packets from the Ethernet driver and gives them to the
TCP/IP stack).

Finally, at the lowest level, we show an Ethernet driver that accepts
Ethernet packets (generated by the IP module), and sends them out
the hardware (and the reverse; it receives Ethernet packets from the
hardware and gives them to the IP module).

As far as Neutrino’s namespace is concerned, the following entries
will exist:

/dev/io -net

The main device created byio -net itself.

/dev/io -net/en N

The Ethernet device corresponding to LANN (whereN is 0 in
our example).

At this point, you couldopen()/dev/io -net/en0 , for example, and
performdevctl()operations on it — this is how thenicinfo

command gets the ethernet statistics from the driver.

Chapter 9 � Network Drivers 117

Network Drivers

The next thing we need to look at is the lifecycle of a packet — howThe lifecycle of a
packet data gets from the hardware to the end user, and back to the hardware.

The main data structure that holds all packet data is thenpkt t data
type (see below). The buffers are managed via theTAILQ()macros
from <sys/queue.h> , and form a doubly-linked list. Buffer data is
stored in anet buf t data type (see below). This data type consists
of a list of net iov t s (each containing a virtual address, physical
address, and length) which are used to indicate one or more buffers:

net iov t relationship.

TheTAILQ()macros allow you to iterate through the list of elements.
The following code snippet illustrates:

// from <sys/queue.h>

#define TAILQ FIRST(head) ((head) -> tqh first)

#define TAILQ NEXT(elm, field) ((elm) -> field.tqe next)

net buf t *buf;
net iov t *iov;

int i;

// walk all buffers

for (buf = TAILQ FIRST (&npkt -> buffers); buf; buf = TAILQ NEXT (buf, ptrs)) {

for (i = 0, iov = buf -> net iov; i < buf -> niov; i++, iov++) {
// buffer is : iov -> iov base

// length is : iov -> iov len

118 Chapter 9 � Network Drivers

Network Drivers

// physical addr is : iov -> iov phys
}

}

We’ll start with the downward-going direction (from the end-user toGoing down

the hardware). A message is sent from the end-user (via the socket
library), and arrives at the TCP/IP stack. The TCP/IP stack does
whatever error checking and formatting it needs to do on the data.
When the TCP/IP stack is ready to send the data off to the IP module,
it allocates a packet buffer. This packet buffer contains just the data
from the TCP/IP stack — no provision is made for any of the other
protocols’ headers or encapsulation information (this is handled later,
by each individual module).

Since the TCP/IP stack and the other modules aren’t bound to each
other, it’s up toio -net to do the work of accepting the packet from
the TCP/IP stack and giving it to the convertor module. The TCP/IP
stack informsio -net that it has a packet that should be sent to “a
lower level” by calling thetx down()function within io -net .
io -net looks at the various fields in the packet and the parameters
passed to the function, and calls therx down()function in the IP
module. Note that thecontentsof the packet aren’t copied — since all
these modules (e.g., the TCP/IP stack and the IP module) are
DLL-loaded intoio -net ’s address space, all that needs to be
transfered between modules are pointers to the data (and not the data
itself).

Once the packet arrives in the IP module, a similar set of events occur
as described above: the IP module converts the packet to an Ethernet
packet, and sends it to the Ethernet module to be sent out to the
hardware. Note that the IP module will need to add data in front of the
packet in order to encapsulate the IP packet within an Ethernet packet.
(The IP module may also do other “tricks” like fragmenting the
packet.)

Chapter 9 � Network Drivers 119

Network Drivers

seanb sez 000424 (comments not integrated into above paragraphs
yet -RK):

This is not quite correct. The stack currently registers as a down
producer of type “IP.” Once it callsio -net ’s tx down(), it’s already
passing on a fully-formed IP packet (i.e., fragmentation has already
occurred). What you’re describing is something like:

(TCP) producer (down) \

| |
v |

(TCP/IP) convertor | These are currently

| \ all done inside the
v / stack. It could be

(IP) producer (down) | done like this, but

| | currently isn’t.
v |

(IP EN) convertor /

|
v

(EN) producer (up)

☞

Again, to avoid copying the packet data in order to insert the Ethernet
encapsulation header in front of it, only the data pointers are moved.
By inserting an element at the front of the IOV list (by moving the
IOV entry list down by one entry and placing a new entry at the
“hole”), the Ethernet header can be prepended to the data buffer
without having to actuallycopythe data bytes themselves from the IP
header — the only “data” that got moved was the address/length
tuple(s).

In the upward-headed direction, a similar chain of events occurs. TheGoing up

ethernet driver receives data from its hardware, and allocates a packet
into which it places the data. (For efficiency, it may use
memory-mapping tricks to cause the hardware to directly place the
packet into a pre-allocated area.) It then callsio -net ’s tx up()
function, telling it that it has a packet that’s ready to be given to a
higher level.io -net figures out who to give it to, and calls their
rx up() function. In our example, this would be the IP-EN convertor
module, as it now needs to look at the packet and get at just the IP

120 Chapter 9 � Network Drivers

Network Drivers

portion (the packet arrived from the hardware with Ethernet
encapsulation).

Note that in an upward-headed packet, data isneveradded to the
packet as it travels up to the various modules, so the list of
net buf t s is not manipulated. For efficiency, there are two
arguments toio -net ’s tx up()and correspondingly to a registered
module’srx up() function, namelyoff andframelensub. These are
used to indicate how much of the data within the buffer is of interest
to the level to which it’s being delivered. For example, when an IP
packet arrives over the Ethernet, there will be 14 bytes of Ethernet
header at the beginning of the buffer. This Ethernet header is of no
interest to the IP module — it’s only relevant to the Ethernet module.
Therefore, theoff argument would be set to the value14 to indicate to
the next higher layer that it should ignore the first14 bytes of the
buffer. This saves the various levels inio -net from having to
continually copy buffer data from one format to another. The
framelensuboperates in a similar manner, except that it refers to the
tail end of the buffer — it specifies how many bytes should be ignored
at the end of the buffer, and is used with protocols that place a tail-end
encapsulation on the data.

Now that we’ve seen the overall architecture, and how a packet travelsThe details
throughio -net , we’ll look at the details of the various modules.

@@@ Describe producers; how much detail do we want here?Producers

A producer can be an “up producer,” a “down producer,” or both. The
“up” direction is from the hardware (the lowest level in theio -net

hierarchy) towards the end-user, and “down” is the opposite direction.

When a module is an “up producer,” this means that the module may
pass packets on to modules above it. Whether the packet originated at
up-producerA, or up-producerA received it from up-producerB below
it, from the next recipient’s point of view the packet came from the up
producer directly below it.

Chapter 9 � Network Drivers 121

Writing your own driver

A producer may produce both types (up and down) of packets, as
would be the case, for example, with the TCP/IP module.

@@@ Describe filters; how much detail do we want here?Filters

@@@ Describe convertors; how much detail do we want here?Convertors

On a “downward-headed packet,” a convertor may add headers or
trailers as part of its duties and may manipulate the list of
net buf t s.

Writing your own driver

In this section, we’ll look at the work that you must do to write a
driver for your own hardware card. Fromio -net ’s perspective, the
card will be an “up producer” because it produces data that goes up
into theio -net infrastructure. It’s not a “down producer” because it
doesnot produce any data that goes down in theio -net

infrastructure — the down-going direction is strictly limited to the
hardware and network interface of the card.

We’ll look at the following topics:

� general overall structure

� binding your driver toio -net

� required functions

Our example will be a “null” driver that absorbs any data sent to it (it
pretends it went out the hardware) and, once per second, generates
incoming data (it pretends data arrived from the hardware).

122 Chapter 9 � Network Drivers

Writing your own driver

The first thing that you must do in your driver is create a publicBinding to
io -net symbol calledio net dll entryof type io net dll entry t . This

is used by theio -net process when it loads your DLL:

// forward prototype
int
my init (void *dll hdl,

dispatch t *dpp,
io net self t *ion,
char *options);

io net dll entry t io net dll entry =
{

2,
my init,
NULL

};

Here we’ve simply defined it as containing a single function called
my init(). At a minimum, this function should:

1 store the passed handle (thedll hdl argument) and function
pointers array (theion argument) for future reference

2 register withio -net to indicate what kind of driver this is

3 returnEOK (or an error)

At this point, the first phase of initialization has been performed. In a
“real” driver, the initialization function may perform additional
functions:

1 parse additional command line arguments

2 detect and initialize devices

3 attach interrupts, map memory, and allocate any other required
resources

4 create additional threads

Whenio -net callsmy init(), it’ll pass 4 arguments. We’ll ignore the
dispatch t * dppand thechar * options; we don’t use them in

Chapter 9 � Network Drivers 123

Writing your own driver

our trivial example here. The other two parameters we’ll just stash
into global variables for later use:

void *null dll hdl;
io net self t *null ion;

int
my init (void *dll hdl, dispatch t *dpp, io net self t *ion, char *options)
{

null dll hdl = dll hdl;
null ion = ion;

if (!null register device ()
|| (errno = pthread create (NULL, NULL, null rx thread, NULL))) {

return (-1); // couldn’t register, fail; errno says why
}
return (0); // success

}

Notice how we’ve created a receiver thread (usingpthreadcreate()).
For our trivial example, this thread will simply sit in a do-forever
loop, sleep for one second, and then pretend that data has arrived from
somewhere, finally giving the data toio -net (we’ll see the code for
this shortly). In a real driver, the functionality would be similar; the
thread would be waiting for some kind of indication from the
hardware that data has arrived (perhaps via a hardware interrupt) and
would then get the data from the hardware, process it, and give it to
io -net .

Important! Since your driver is part of a DLL (and is not its own,
seperate process), you’ll have to beverycareful about error checking,
memory leaking, and such issues. For example, if you callexit()
within your driver, you’ll take down theentire io -net process! If
your driver gets loaded and unloaded many times, and you have a
memory leak, this will add up and eventually your system will run out
of memory!

☞

124 Chapter 9 � Network Drivers

Writing your own driver

Now, to perform the second phase of our initialization, we need to tellTelling io -net
about our
functions

io -net about our driver. Since we’re going to be an “up-producer”
and nothing else, this call is as follows:

// functions that we supply
io net registrant funcs t null funcs =
{

9,
NULL,
null send packets,
null receive complete,
null shutdown1,
null shutdown2,
null advertise,
null devctl,
null flush,
NULL

};

// a description of our driver
io net registrant t null entry =
{

REG PRODUCERUP, // we’re an "up" producer
"devn -null", // our name
"en", // our top type
NULL, // our bottom type (none)
NULL, // function handle (see note below)
&null funcs, // pointer to our functions
0 // #dependencies

};

int null reg hdl;
uint16 t null cell;
uint16 t null lan;

static int
null register device (void)
{

if ((*null ion -> reg)
(null dll hdl,

&null entry,
&null reg hdl,
&null cell,
&null lan) < 0) {

return (0); // failed
}

return (1); // success
}

Chapter 9 � Network Drivers 125

Writing your own driver

At this point, you’ve registered your device driver withio -net .

Note that for simplicity, we’ve used global variables (e.g.,null cell)
— in a real driver, you’d most likely allocate a structure, and pass a
pointer to that structure around. This helps your driver support
multiple cards, as each card’s context information (or “handle”) can
be passed individually. Theio -net infrastructure allows you to
associate your own handle with the binding (in thefunc hdl member
of io net registrant t , identified with the comment “function
handle,” in the example above — we’ve passed aNULL).

☞

Here’s a “big picture” to illustrate:

Cells and endpoints.

As you can see, there are three levels in this hierarchy. At the topmost
level, we have the TCP/IP stack — it provides an interface for
programs to use. For our example, the stack will only be a down
producer (it won’t produce or pass on anything for modules above it.)

126 Chapter 9 � Network Drivers

Writing your own driver

In reality, the stack would probably register as both an upanddown
producer. This is permitted byio -net to facilitate stacking of
protocols.

☞

When the TCP/IP stack started it toldio -net that it produces packets
in the downward-going direction of type “IP” — there’s no other
binding between the stack and its drivers. We’ve labelled this
top-level entity as “cell2,” which is the identifier used byio -net .

Joining the stack (down producer) to the drivers (up producers), we
have two “convertor” modules. Take the convertor module labelled
“IPEN,” as an example. When this module registered as type
REG CONVERTOR, it told io -net that it takes packets of type “IP”
on top and packets of type “EN” on the bottom.

Again, this is the only binding between the IP stack and its lower level
“drivers.” The IPEN portion, along with its ethernet drivers, is called
“cell 0” and the IPZ portion, along with its Z-protocol drivers is called
“cell 1” as far asio -net is concerned.

The purpose of the intermediate convertors is twofold:

1 It allows for increased flexibility when adding future protocols
or drivers (one simply has to write a new convertor module to
connect the two), and

2 it allows for filter modules to be inserted either above or below
the convertor.

Finally, on the bottom-most level of the hierarchy, we have two
different ethernet drivers and two different Z-protocol drivers. These
are “up producers” fromio -net ’s perspective, because they only
generate data in the upward-going direction. These drivers are
responsible for the low-level hardware details. As with the other
components mentioned above, these components advertise themselves
to io -net indicating the name of the service that they’re providing,
and that’s what’s used byio -net to “hook” all the pieces together.

Chapter 9 � Network Drivers 127

Writing your own driver

Since all seven pieces are independent DLLs, loaded byio -net

when it starts up (or later, via themount command), it’s important to
realize that the interface names are the key to the interconnection of
all the pieces, and that the loading order isn’t important —io -net

figures all this out at runtime.

Continuing with our discussion, the next thing to do is “advertise” theAdvertising the
driver’s

capabilities to
io -net

driver’s capabilities. This is done via thenull advertise()function
which you call whenever you detect a card. In our simple example,
we’ll assume that thedevn -null device has always detected exactly
one card, so we’ll simply call thenull advertise()function ourselves,
once.

Note thatio -net will call in to your null advertise()function some
time later as well. This happens whenever someotherdriver is
mounted above yours, so that it too can be informed of your driver’s
capabilities. This ties in with our discussion (above) about the
dynamic nature of the loading of the modules.

Here’s the code for ournull advertise()function (the numbers in the
comments correspond to the notes just after the code sample):

// macros for function pointers

#define ion alloc null ion -> alloc
#define ion alloc npkt null ion -> alloc up npkt

#define ion add done null ion -> reg tx done

#define ion free null ion -> free
#define ion rx packets null ion -> tx up

#define ion tx complete null ion -> tx done

#define MTUSIZE 1514

int
null advertise (int reg hdl, void *func hdl)

{
npkt t *npkt;

net buf t *nb;

net iov t *iov;
io net msg dl advert t *ap;

// 1) allocate a packet; we’ll use this for communications with io -net
if ((npkt = ion alloc npkt (sizeof (*nb) + sizeof (*iov), (void **) &nb)) == NULL) {

return (0);

}

// 2) allocate room for the advertisement message

if ((ap = ion alloc (sizeof (*ap), 0)) == NULL) {
ion free (npkt);

128 Chapter 9 � Network Drivers

Writing your own driver

return (0);
}

// 3) set up the packet into the queue
TAILQ INSERT HEAD (&npkt -> buffers, nb, ptrs);

iov = (net iov t *) (nb + 1);

nb -> niov = 1;
nb -> net iov = iov;

iov -> iov base = ap;

iov -> iov len = sizeof (*ap);

// 4) generate the info into the advertisement message

memset (ap, 0x00, sizeof (*ap));
ap -> type = IO NET MSGDL ADVERT;

ap -> iflags = (IFF SIMPLEX | IFF BROADCAST | IFF MULTICAST | IFF RUNNING);

ap -> mtu min = 0;
ap -> mtu max = MTUSIZE;

ap -> mtu preferred = MTUSIZE;

sprintf (ap -> up type, "en%d", null lan);
strcpy (ap -> dl.sdl data, ap -> up type);

ap -> dl.sdl len = sizeof (struct sockaddr dl);
ap -> dl.sdl family = AF LINK;

ap -> dl.sdl index = null lan;
ap -> dl.sdl type = IFT ETHER;

ap -> dl.sdl nlen = strlen (ap -> dl.sdl data); // not terminated

ap -> dl.sdl alen = 6;
memcpy (ap -> dl.sdl data + ap -> dl.sdl nlen, "\x12\x34\x56\x78\x9a\xbc", 6);

// 5) bind the advertisement message to the packet; note the use of
// the NPKT MSG flag to indicate to the upper modules that this

// is a message intended for them, rather than a "regular" packet

npkt -> org data = ap;
npkt -> flags |= NPKT MSG;

npkt -> iface = 0;

npkt -> framelen = sizeof (*ap);

if (ion add done (null reg hdl, npkt, NULL) == -1) {

ion free (ap);
ion free (npkt);

return (0);
}

// 6) complete the transaction
ion rx packets (null reg hdl, npkt, 0, 0, null cell, null lan, 0);

ion tx complete (null reg hdl, npkt);

return (0);
}

In the code sample above, the following steps are taken: @@@
MORE INFO, this is just an outline @@@

1 Allocate a packet for the communication. The function
ion alloc npkt() is a macro expansion for thealloc up npkt()

Chapter 9 � Network Drivers 129

Writing your own driver

function (defined below), which is responsible for allocating an
upgoing packet. Here we’ve created the initial packet that we’re
going to send to the upper layer (io -net itself).

2 Allocate room for the advertisement message. The function
ion alloc() is a macro expansion for thealloc() function
(defined below) and is used to create room for @@@.

3 Set up the packet into the queue. Here we bind the pointers to
the buffers into thenet iov t data type that we allocated
above.

4 Generate the info into the advertisement message. We create
the advertisement message ourselves here by filling the various
members of theapstructure (of type
io net msg dl advert t). @@@ EXPL flags, like
IO NET MSG DL ADVERT, IFF * family.

5 Bind the advertisement message to the packet. Finally, we
perform pointer manipulations to attach the data (the
advertisement message) into the packet.

6 Complete the transaction. To complete the transaction, we call
ion rx packets()(a macro that expands totx up(), defined
below) which sends a packet to the layer above you. Then, we
call ion tx complete()(a macro that expands totx done(),
defined below) which indicates that the packet has been
consumed (i.e., we’re now done with the packet). In our case,
this will @@@?do what?@@@

At this point any modules which are attached to you from above know
the characteristics of your driver.

The next two things to look at are how your driver receives data from
the higher levels (destined for transmission via the hardware) and how
it tells the higher levels that data has arrived (from the hardware).

130 Chapter 9 � Network Drivers

Writing your own driver

In our sampledevn -null driver, recall that we created a thread toReceiving data
and giving it to a

higher level
perform the “receive data from hardware” function:

...

pthread create (NULL, NULL, null rx thread, NULL);
...

Let’s now look at this function:

void *

null rx thread (void *not used)
{

@@@ data; // what type should this be?

npkt t *pkt;

while (1) {

// 1) wait for hardware
sleep (1);

// 2) pretend data has arrived

// 3) allocate upward -headed packet

pkt = (*null ion -> alloc up npkt) (sizeof (net buf t) + sizeof (net iov t) + MTUSIZE, &data);

// set NPKT NO RES flag to ensure your tx done called before tx done returns

// 4) fill data at MTU location in up packet

// 5) call reg tx done()
// 6) call tx up()

// 7) call null ion -> tx done() (outcalls to your tx done() function)
}

}

@@@ Step-by-step work in progress. . .

1 Wait for hardware. In our simple driver, we simply called
sleep()to wait for one second, to simulate some form of delay
as might be encountered while waiting for data from a network.
Depending on the complexity of your actual hardware, the
sleep()call might just be replaced with something equally
simple, like anInterruptWait(). This really depends on the
hardware architecture, however.

2 Pretend data has arrived. In our simple driver, we assume that
data is available at this point (i.e., we’ll create some).
Obviously, this will be one of the key, hardware-specific
portions of your driver, as you’ll have to get the data from the
hardware.

Chapter 9 � Network Drivers 131

Writing your own driver

3 Allocate upward-headed packet. At this step, we need to
allocate a packet that we can place the data into. Note that we
set the NPKT NO RESflag, even though it’s less efficient (but
easier to understand). It means that before thetx done()that’s
called in thenull rx thread()returns,your outcall function
tx done()has been called, implying that the packet has been
freed. This effectivelypreventsyou from reserving the packet
memory and being able to reuse it. It’s easier to understand
because the entire lifecycle of the packet is presented, rather
than having to discuss data buffer management issues: -) ,
although we’ll get to those later.

4 Fill data at MTU location in up packet. At this point, we stuff
data into the up-going packet. Notice that we’re just stuffing a
constant message for our simple example here.

5 Call reg tx done()function. This binds atx done()handler to
the packet. When the reference count goes to zero, the bound
function will be called, and it’s up to it to release the storage for
the packet.

6 Call tx up() function. This sends the packet up to the next
higher layer.

7 Call tx done()function. This does what?@@@ I’m guessing:
indicates toio -net that the packet can be freed, and that it
(io -net) can call the chain oftx done()s that are bound to the
packet to free it?

@@@ TODO need moreTransmitting data
to the hardware

When a higher level sends data to a lower level for processing, one of
the “tricky” things to watch out for is the fact that the data may be
presented as a number of buffers (rather than just one single buffer as
it is in the up-going direction). This is because of the way that the
higher levels prepend and append encapsulation data onto the packet.

132 Chapter 9 � Network Drivers

The details

The details

Now that we’ve seen an outline of a sample driver, we’ll take a look in
detail at the definitions for the functions that we used.

You must include the file<sys/io -net.h> which containsBinding your
driver to io -net structures that you’ll use to bind your driver toio -net .

Binding of the driver is performed byio -net DLL-loading your
driver, and looking for a specific symbol:io net dll entry. This
symbol is of typeio net dll entry t , and contains the following
members:

typedef struct io net dll entry {
int nfuncs;
int (* init) (void *dll hdl, dispatch t *dpp, io net self t *ion, char *options)
int (* shutdown) (void *dll hdl);

} io net dll entry t;

The members are defined as follows:

nfuncs The number of functions in the
io net dll entry t structure. In the structure
above, this would be the constant2 as there are two
functions,init() andshutdown().

init A pointer to your initialization function. This will be
the first function called byio -net in your driver. You
should initialize your driver in this function. This
function is mandatory.

shutdown An (optional) pointer to your “master” shutdown
function. This is called just beforeio -net finally
closes your driver DLL. A particular DLL can register
multiple times as multiple different things (e.g., as an
up-producer and as a convertor). When a particular
registration instance (a “registrant”) is shut down, its
shutdown1()andshutdown2()functions (from the

Chapter 9 � Network Drivers 133

The details

io net registrant t structure’s
io net registrant funcs t function pointer
array) are called. Whenall of the DLL’s registrants are
closed, thenthis shutdown()function is called. If you
don’t wish to supply this function, place aNULL in this
member.

The init() function that you supply is then responsible for the
following:

� processing of sub-options passed in theoptionsargument.

� detection and configuration of all cards (one or more, can be
“auto-detect” or can be based on the sub-options in theoptions
argument).

� binding toio -net .

The init() function that you supply gets passed the followingArguments

arguments:

void * dll hdl

An internal handle used byio -net — you’ll need to hold onto
this handle for future calls into theio -net framework.

dispatch t * dpp

Dispatch handle.

io net self t * ion

A big honkin’ structure, see below.

char * options

Command line sub-options related to your driver.

134 Chapter 9 � Network Drivers

The details

The io net self t structure

The io net self t pointer points to a structure that contains
io -net ’s functions that are accessible to you. You should cache this
pointer (passed to you in yourinit() function) so that you have access
to those functions later.

The structure is defined as follows (the arguments are shown in the
individual function descriptions below):

typedef struct io net self {
u int nfuncs;
void *(* alloc) (. . .);
npkt t *(* alloc down npkt) (. . .);
npkt t *(* alloc up npkt) (. . .);
int (* free) (. . .);
paddr t (* mphys) (. . .);
int (* reg) (. . .);
int (* dereg) (. . .);
int (* tx up) (. . .);
int (* tx down) (. . .);
int (* tx done) (. . .);
int (* reg tx done) (. . .);
int (* reg byte pat) (. . .);
int (* dereg byte pat) (. . .);
int (* devctl) (. . .);
int (* tx up start) (. . .);
int (* memcpyfrom npkt) (. . .);
int (* raw devctl) (. . .);

} io net self t;

Thenfuncsmember indicates how many functions are provided in the
table; it’s filled automatically byio -net .

void *(* alloc) (size t size, int flags)

Allocates a buffer that’s safe to pass to any other module.

npkt t *(* alloc down npkt) (int registrant hdl, size t size,
void ** data)

Allocates annpkt t and initializes its internal members to values
required for downward travel. The required number oftx donearray

Chapter 9 � Network Drivers 135

The details

elements (slots) immediately implicitly following thenpkt t is
allocated in order to successfully reach any endpoint registrant this
driver is currently connected to.

npkt t *(* alloc up npkt) (size t size, void ** data)

Allocates annpkt t and initializes its internal members to values
required for upward travel, as follows:

numcomplete the value1 to indicate that it has room for one
tx done(the originator’s) array element
immediately implicitly following the structure.

req complete the value0 to indicate the single slot has not been
used yet.

ref cnt the value1 as the reference count (only in use by
one module at this point).

flags the bits NPKT UP and NPKT EXCLUSIVE are on,
indicating it’s an upward-bound packet and your
module has exclusive access to it.

buffers initialized to an emptyTAILQ queue structure.

On successful completion,datapoints to a buffer ofsizebytes in
length.

int (* free) (void * ptr)

Frees a buffer allocated by any of the above 3 methods (alloc(),
alloc down npkt(), andalloc up npkt()).

paddr t (* mphys) (void * ptr)

Quick lookup of physical address of buffer allocated by any of the
above 3 methods (alloc(), alloc down npkt(), andalloc up npkt()).

136 Chapter 9 � Network Drivers

The details

int (* reg) (void * dll hdl, io net registrant t
* registrant, int * reg hdlp, uint16 t * cell, uint16 t
* endpoint)

This call binds your driver toio -net . Thedll hdl is what you got
called with in yourinit() function (from theio net dll entry t

data type that you provided). Theregistrantparameter is a pointer to
an io net registrant t , which is defined below. The registrant
describes what they are registering as. On success,reg hdlp is filled,
and should be used as theregistranthdl parameter to subsequent calls
into io net , with thecell andendpointindicating the registrant’s
place to other registrants (seetx up(), below).

int (* dereg) (int registrant hdl)

Deregister fromio -net . Note that if a DLL has registered multiple
times, its main DLL shutdown function (above) is not called until
after all registrants have deregistered.

int (* tx up) (int registrant hdl, npkt t * npkt, int off ,
int framlen sub, uint16 t cell, uint16 t endpoint,
uint16 t iface)

Send a packet to the layer above you. The parameteroff indicates to
the layer above at which offset into the packet the type your layer
presents starts. Theframelensubparameter indicates how many bytes
on the end of the packet are not your type. These two parameters
allow a packet to be “decapsulated” without the need to perform a
copy operation. Finally,cell, endpoint, andiface indicate to the layers
above who this packet came from. Thecell andendpointare supplied
by io -net when you registered above. Theiface is for internal use
and allows a single registrant to present multiple interfaces of the
same type to upper modules. It should start at0 and increase
sequentially. In the case of a driver talking to hardware (a simple up
producer with no modules below it), it’s actually more flexible to
register multiple times if multiple interfaces are present (once for each
interface). In this case, theifaceparameter is always0.

Chapter 9 � Network Drivers 137

The details

int (* tx down) (int registrant hdl, npkt t * npkt)

Send a packet down to the layer below you. The destination that
you’re trying to reach is stored in thecell, endpoint, andiface
members ofnpkt.

int (* tx done) (int registrant hdl, npkt t * npkt)

For downward-headed packets, this function is called once by the
module that consumes the packet. This causes the chain oftx done()s
stored innpkt to be called in LIFO order. For upward-headed packets,
this function is called by each module (including the originator) when
finished with the packet. The singletx done()stored in the packet is
called when theref cnt member goes to zero.

int (* reg tx done) (int registrant hdl, npkt t * npkt, void
* done hdl)

This function is used to store atx done()callback in the packetnpkt.
It’s called once by the originator for upward-headed packets, and
called by every module that adds to thenpktbuffer chain for
downward-headed packets. You must call this function rather than
stuffing the value directly becauseio -net keeps track of how many
tx done()s a module has outstanding (used for unmounting the
module).

int (* reg byte pat) (int registrant hdl, unsigned off ,
unsigned len, unsigned char * pat, unsigned flags)

Before a module will receive any upward-headed packets, it must
register withio -net to indicate what subtype it wants. This is in
place to allow packet filtering, so that the module isn’t getting packets
that it will not be dealing with. The module already specified its
bottom type when it registered (e.g."en" , this would specify
Ethernet subtypes0x0800and0x0806(for arp), or the IP protocol type
PROT QNET for qnet). If a module wants to getall subtypes, it
would use the constantBYTE PAT ALL in theflagsparameter.

138 Chapter 9 � Network Drivers

The details

Important! Your modulemustregister forsomekind of byte pattern,
otherwise it willnot get any up-headed packets.

☞

int (* dereg byte pat) (int registrant hdl, unsigned off ,
unsigned len, unsigned char * pat, unsigned flags)

Deregisters a byte pattern fromio -net .

int (* devctl) (int registrant hdl, int dcmd, void * data,
size t size, int * ret)

Send adevctl()to io -net .

npkt t *(* tx up start) (int reg hdl, nptk t * npkt, int
off , int framelen sub, uint16 t cell, uint16 t endpoint,
uint16 t iface, void * done hdl)

A utility function for use by originators of up-headed packets. Unlike
the rest of the functions provided byio -net , thenpktparameter can
be a linked list of packets rather than a single entity. It efficiently
combinesio -net ’s reg tx done(), tx up()andtx done()functions (3
common operations for originators of up-packets) as follows:

reg tx done (reg hdl, npkt, done hdl);
tx up (reg hdl, npkt, off, framelen sub, cell, endpoint, iface);
tx done (reg hdl, nptk);

This processing is done for allnpkts in the linked list. This function
returns a linked list ofnpkts that had errors, orNULL if all succeeded.

int (* memcpyfrom npkt) (const iov t * dst, int dparts,
int doff, const npkt t * snpkt, int soff, int smax len)

Utility function that’s generally useful for copying data from packets.
Similar tomemcpyv(). The return value is the number of bytes copied.

Chapter 9 � Network Drivers 139

The details

int (* raw devctl) (resmgr context t * ctp, io devctl t
* m, io net iofunc attr t * attr)

The idea here is to allow someone to write a class ofFILTER ABOVE
which sits above, say, all Ethernet registrants and is passed allopen()s
so they could then handle allread()s,write()s, etc., to that device. The
only I/O message thatio -net is concerned about is the message
corresponding to thedevctl()function call, so if they got adevctl()
they didn’t handle the default would be to call this function.

Here’s the definition for theio net registrant t structure (aThe
io net registrant t

structure
member ofio net self t , above):

typedef struct io net registrant {
uint32 t flags;
char * name;
char * top type;
char * bot type;
void * func hdl;
io net registrant funcs t * funcs;
int ndependencies;

} io net registrant t;

This structure is assumed to be followed by a variable number of
io net dependency t elements, as specified by the
ndependenciesmember:

typedef struct io net dependency {
char * dep;
uint32 t flags;

} io net dependency t;

The members (for both structures) are defined as follows:

flags(from io net registrant t)

Indicates the type of driver being registered, see below.

name A pointer to the ASCII name of the driver, for example,
"devn -speedo" .

140 Chapter 9 � Network Drivers

The details

top type A pointer to the ASCII name of the top type binding, for
example,"en" .

bot type A pointer to the ASCII name of the bottom type
binding, for example,"ip" .

func hdl A handle that you define, which will get passed to your
functions when they get called. It’s a convenient way of
binding a data structure to this particular registration
instance (because your module can register multiple
times as different things).

funcs A pointer to a function table, see below.

ndependencies

The number of elements in the
io net dependency t table that’s assumed to
implicitly follow the io net registrant t table.

dep @@@

flags(from io net dependency t)

@@@

Theflagsmember ofio net registrant t is a bit field, selected
from the following:

REG FILTER ABOVE

A filter that sits above an up producer and below the bottom end
of a convertor.

REG FILTER BELOW

A filter that sits below a down producer and above the top end
of a convertor.

REG CONVERTOR

A convertor.

Chapter 9 � Network Drivers 141

The details

REG PRODUCERUP

A producer in the “up” direction.

REG PRODUCERDOWN

A producer in the “down” direction.

Thefuncsmember ofio net registrant t is a pointer to a
function table that you supply, as per the following (function
parameters given below):

typedef struct io net registrant funcs {
int nfuncs;
int (* rx up) (. . .);
int (* rx down) (. . .);
int (* tx done) (. . .);
int (* shutdown1) (. . .);
int (* shutdown2) (. . .);
int (* dl advert) (. . .);
int (* devctl) (. . .);
int (* flush) (. . .);
int (* raw open) (. . .);

} io net registrant funcs t;

The members are defined as follows:

int nfuncs; The number of function pointers in the structure.
For the structure as given above, this should be the
constant9.

int (* rx up) (npkt t * npkt, void * func hdl, int off , int

framlen sub, uint16 t cell, uint16 t endpoint, uint16 t

iface);
This function is called when your module receives
an up-headed packet from a module below you. The
cell, endpoint, andifaceparameters describe which
module the packet is coming from.

int (* rx down) (npkt t * npkt, void * func hdl);
This function is called when your module receives a
down-headed packet from a module above you. The

142 Chapter 9 � Network Drivers

The details

cell, endpoint, andifacemembers of thenpkt
structure describe the destination of the packet, and
thebuffersmember contains the packet data.

int (* tx done) (npkt t * npkt, void * done hdl, void

* func hdl);
Called when a packet that you’re responsible for
has its reference count go to zero; effectively
indicating that it has been consumed and may now
be “recycled” (or disposed of).

int (* shutdown1) (int registrant hdl, void * func hdl);
This is the first “shutdown” function that gets called
when your driver is asked to shutdown. You can
prevent the driver from being shut down by
returning an error indication (for example,EBUSY
to indicate that there are active transmissions
occuring; it would be up to the higher level to retry
later) or anEOK to allow the shutdown to occur.
The implication here is that onecannotforce a
shutdown of a driver that returns an error indication.
If you proceed with the shutdown, it’s your last
chance to flush out buffers using the thread that
calledshutdown1().

int (* shutdown2) (int registrant hdl, void * func hdl);
At this point, everything inio -net has detached
from your driver, and youmustshutdown. This is
the call that you’d use to kill off any of your worker
threads, for example. Generally speaking,
shutdown2()does most of the “work” associated
with shutting down the driver.

int (* dl advert) (int registrant hdl, void * func hdl);
Called byio -net to cause your driver to advertise
itself. Generally, this will be called whenever a new
higher-level driver starts up, as it will need to be
made aware of the capabilities of all drivers at

Chapter 9 � Network Drivers 143

The details

levels below it, so that it can determine what
capabilities exist underneath it.

int (* devctl) (void * hdl, int dcmd, void * data, size t

size, int * ret);
This is the callin to your driver to perform adevctl()
function. This would get invoked when someone
does adevctl()on your driver’s
/dev/io -net/ driver pathname. Currently, only
the “nic info” devctl()is defined, which is used to
fetch statistics from a driver. You don’t have to
support adevctl()handler. @@@ to document
nicinfo structure and devctl @@@

int (* flush) (int registrant hdl, void * func hdl);
@@@

int (* raw open) (resmgr context t * ctp, io open t

* msg, io net iofunc attr t * attr, void * extra);
@@@

The init() function that you supply in yourio net dll entrystructureCommand line
processing gets passed the suboptions string fromio -net . You can use the

getsubopt()function to parse command line arguments passed to your
driver.

Once you have processed any (optional) command line parameters forDetection and
configuration of cards your driver, you should then detect any and all cards that your driver

is responsible for. (Depending on your hardware, the PCI calls may
come in handy — see the PCI chapter as well as the library
reference.) Note that, depending on your implementation, you may
wish to detect only cards that have been explicitly given on the
command line, or you may wish to detect all cards, or only one
specific card — it’s up to you as the driver writer. The “standard”
behaviour, though, in the absence of any command line options to the
contrary, is to detect and install all cards, but if command line options
are specified indicating a particular card, then only that card should be
detected and installed. Generic command line options (likeverbose ,
for example) should have no effect on the card-scanning functionality.

144 Chapter 9 � Network Drivers

The details

Once you’ve detected your card(s), you’ll need to perform whatever
setup is appropriate at the hardware level and the software level (e.g.,
initialization of control ports, hardware interrupt allocation and
binding, creation of data structures, etc.).

Once the device is configured, you’ll want to bind it into theio -netBinding to io -net

hierarchy. This is done via thereg() function, from the table of
function pointers that is passed in the
io net registrant funcs t (described above).

Once bound in, you’ll receive callouts fromio -net into the
functions that you specified. Your hardware will most likely generate
interrupts (or inform you in some other way that data has arrived);
you’ll then use the callins toio -net to inform it that data has arrived
(after suitable processing on your end).

@@@ Is something like this at all useful? It’s a work-in-progress that
I used to get some initial understanding. We could probably use this
for a “big picture” with suitable massaging. . .

io net registrant funcs t speedo funcs = {

8,

NULL, /* rx up - I’m a driver */
&speedo send packets, /* rx down() */

&speedo receive complete, /* tx done() */

&speedo shutdown1, /* shutdown() */
&speedo shutdown2, /* shutdown() */

&speedo advertise, /* advertise ifaces ??? */

&speedo devctl, /* devctl() */
&speedo flush, /* flush() */

NULL /* RAW open() ??? - nraw */

};

io net registrant t speedo entry = {
REG PRODUCERUP, /* flags */

"devn -speedo", /* name */

"en", /* top type */
NULL, /* bot type */

NULL, /* rx down hdl - load with Nic on each register */

&speedo funcs, /* funcs */
0 /* dependencies */

};

in net dll entry t:

init = speedo init;

speedo init() {
speedo detect() {

nic create device();

speedo scan() {

Chapter 9 � Network Drivers 145

The details

speedo register device(){
speedo config() {

}

speedo initialize() {
}

#define ion register ext ->ion ->reg

ion register(dll hdl, &speedo entry);
}

speedo advertise(){
}

}

}
}

Thenpkt t structure is defined as follows:The npkt t data
type

typedef struct npkt {
TAILQ HEAD(, net buf) buffers;
npkt t * next;
void * io net0;
void * org data;
uint32 t flags;
uint32 t framelen;
uint32 t tot iov;
uint32 t io net1;
uint32 t ref cnt;
uint16 t num complete;
uint16 t req complete;
uint16 t cell;
uint16 t endpoint;
uint16 t iface;
uint16 t skip;
union {

void * p;
unsigned char c [16];

} inter module;

// this field follows the structure implicitly:
npkt done t c [];

} npkt t;

The fields are defined as:

buffers A queue of buffers, managed using theTAILQ*()
macros from<sys/queue.h> .

next Pointer to nextnpkt t .

146 Chapter 9 � Network Drivers

The details

io net0, io net1, ref cnt

Internal toio -net , do not examine or modify.

org data For the exclusive use of the originator of this
npkt t . No one else should touch this member.

flags Status of buffer, see below.

framelen Total length of the entire packet.

tot iov Total number ofiov s in the packet.

numcomplete @@@number complete? Indicates number of
elements in thenpkt done t array which
implicitly immediately follows this structure?

req complete Required number ofnpkt done t elements this
downward-headed packet required before it
reached its final destination. Only for information
purposes (read-only) in originator’stx done()
function if originator isn’t usingio -net ’s
alloc downpkt() function.

cell Cell npkt t is headed to / from.

endpoint Endpoint within cell.

iface Interface within endpoint.

skip @@@seanb sez that this is reserved for the
future. Here’s a work in progress: For use by
REG FILTER BELOW types of modules. The idea
is that they could receive a packet from above,
modify it somehow, stuff theirreg hdl in theskip
member, and returnTX DOWN AGAIN (from
<sys/io -net.h>) from theirrx down()function.
The down producer would seeTX DOWN AGAIN
and resend it down (after re-checksuming,
re-routing, etc.), but this time, the
REG FILTER BELOW would be skipped by

Chapter 9 � Network Drivers 147

The details

io -net . This hasn’t really been tried yet. The
code is inio -net , but no filters have been written
yet and the stacks don’t check for
TX DOWN AGAIN yet...

inter module.p, inter module.c

A data area that can be used by any module to pass
information to the module above or below it.

c (implied) (array, implicitly immediately after this structure)
On a downward-headed transmission, this array is
numcompleteelements long, whereas on an
upward-headed transmission, it’s always1 element
long. Note that this array isn’t part of the structure
proper, but implicitly immediately follows the
structure.

And theflagsparameter is selected from the following:

NPKT EXCLUSIVE

You have exclusive access to this upward bound
npkt t .

NPKT NO RES

Up producer wants its buffer back right away.

NPKT UP npkt t is headed in the up direction; down if this
bit is not set.

NPKT MSG Indicates that this message is intended for a different
layer, rather than actually containing packet data.

NPKT MSG DYING

When a driver is unmounted,io -net synthesizes a
NPKT MSG| NPKT MSG DYING npktand sends it
up as though it came from the driver. It has no data
in it. It means thiscell, endpoint, and allifaces are
gone.

148 Chapter 9 � Network Drivers

The details

NPKT BCAST @@@Broadcast?

NPKT MCAST

@@@Multicast?

NPKT INTERNAL

Internal toio -net .

Chapter 9 � Network Drivers 149

Chapter 10
PCI Drivers

In this chapter. . .
PCI drivers

Chapter 10 � PCI Drivers 151

PCI drivers

PCI drivers

This chapter describes the PCI drivers in detail.

Chapter 10 � PCI Drivers 153

Chapter 11

USB Drivers

In this chapter. . .
USB drivers
USB Driver Library reference
USB Skeleton Driver

Chapter 11 � USB Drivers 155

USB drivers

USB drivers

REVISION 00 06 12 09 30

This chapter describes:

� the architecture of the USB stack and driver library,

� the functions available to writers of class drivers,

� the data structures used by the stack, and

� a sample “skeleton” driver which can be used as the basis for your
own class driver.

USB (Universal Serial Bus) is a hardware and protocol specificationOverview
for the interconnection of various devices to a host controller. We
supply a USB stack that implements the protocol, and allows
user-written class drivers to communicate with these devices. We also
supply a USBD (USB Driver) library that class drivers use to
communicate with the USB stack. (Note that the class driver can be
considered to be a “client” of the USB stack.)

The stack is implemented as a stand-alone process that registers the
pathname of/dev/usb (by default). The stack (currently) contains
the hub class driver within it.

Data buffers are implemented via a shared memory interface that’s
managed by the USB stack and the client library. That is to say, the
client library provides functions to allocate data buffers in the shared
memory region, and the stack manages these data buffers and gives
the client library access to them. This means that all data transfers
must use the provided buffers. The one limitation that this imposes is
that a class drivermustbe on the same node as the USB stack. The
clientsof the class driver, however,canbe network distributed. The
advantage of this approach is that no additional memory copy occurs
between the time that the data is received by the USB stack and the
time that it’s delivered to the class driver (and vice versa).

Chapter 11 � USB Drivers 157

USB Driver Library reference

@@@ talk about USB enumerators here. . . Here’s a random,
unverified paragraph for your amusement/discussion (fromrk):

A USB enumerator is supplied with Neutrino. The enumerator
attaches to the USB stack, and waits for device insertions. When a
device insertion is detected, the enumerator looks in the configuration
manager’s database to see which class driver it should start. The
driver is then started, and provides the appropriate services for that
class of device — for example, a USB Ethernet class driver would
register withio -net and bring the interface up. For small,
deeply-embedded systems, the enumerator is not required; the class
drivers can be started individually, and they’ll wait around for their
particular devices to be detected by the stack. After that, they’ll
provide the appropriate services for that class of device, just as if
they’d been started by the enumerator. When a device is removed, the
enumerator will shut down the class driver.

USB Driver Library reference

This section describes the USBD API calls available and the data
structures that are commonly used. Generally, a class driver will
perform the following operations (see the “USB Skeleton Driver,”
below, for implementation details):

1 connect to the USB stack (via theusbdconnect()function), and
provide two callbacks; one for insertion and one for removal.

2 in the insertion callback:

2a connect to the USB device (via theusbdattach()
function),

2b select the configuration (usbdselectconfig()) and
interface (usbdselectinterface()), and

2c set up communications pipes to the appropriate endpoint
(usbdopenpipe()).

158 Chapter 11 � USB Drivers

USB Driver Library reference

3 in the removal callback, detach from the USB device (via the
usbddetach()function)

4 all data communications (e.g., reading and writing data,
sending and receiving control information) are set up via the
usbdsetup*() functions and initiated via theusbdio() function
(with completion callbacks if required).

Note that the term “pipe” is a USB-specific term, and hasnothingto
do with standard POSIX “pipes” (as used, for example, in the
command linels | more). In USB terminology, a “pipe” is simply
a handle; something that identifies a connection to an endpoint.

☞

The following function categories are provided:Functions by
category

� Connection

- usbdconnect()

- usbddisconnect()

- usbdattach()

- usbddetach()

� Memory management

- usbdalloc()

- usbdfree()

- usbdalloc dev()

- usbdfree dev()

- usbdalloc urb()

- usbdfree urb()

� Data transfer

- usbdsetupbulk()

- usbdsetupfeature()

Chapter 11 � USB Drivers 159

USB Driver Library reference

- usbdsetupintr()

- usbdsetupisoch()

- usbdsetupvendor()

- usbdio()

� Pipe management

- usbdopenpipe()

- usbdresetpipe()

- usbdabort()

- usbdclosepipe()

� Configuration / interface management

- usbdselectconfig()

- usbdselectinterface()

� Miscellaneous (@@@ should these be subdivided or moved?)

- usbdget desc()

- usbdhcd info()

- usbdstatus()

This section contains the detailed function and structure definitionAlphabetical
listing of functions

and structures
descriptions, presented alphabetically.

The following functions are available to class drivers:Functions

usbd abort (@@@TBD@@@)

This routine aborts all requests on a pipe. This function can be used
during an error condition (for example, to abort a pending operation),
or during normal operation (for example, to halt an isochronous
transfer).

160 Chapter 11 � USB Drivers

USB Driver Library reference

void *usbd alloc (int flags, size t size)

Allocates a memory area that can then be used for message transfer.
You mustuse the memory area allocated by this function, because it’s
allocated in shared memory (shared between the class driver, via its
library, and the USB stack).

To free the memory, useusbdfree()below.

usbd device t *usbd alloc dev (size t * ext size)

@@@ Does stuff, eh?

To free the memory, useusbdfree dev()below.

urb t *usbd alloc urb (int flags, size t extra)

Allocates an URB for subsequent URB-based operations. Theextra
parameter indicates how much extra data area (in bytes) should be
allocated immediately after the URB. This data area is for your own
use and isn’t used by the stack in any way. @@@ need a function to
get at it, as an URB is (supposedly) an opaque data type @@@

To free the memory, useusbdfree urb() below.

usbd attach (@@@TBD@@@)

This routine allows a class driver to attach to a specific device. The
flagsargument can be any one of the following:

� USBD ATTACH RDWR

� USBD ATTACH RDONLY

� USBD ATTACH EXCL

� USBD ATTACH SHARE

Chapter 11 � USB Drivers 161

USB Driver Library reference

@@@ Prolly meant to say (RDWR or RDONLY) and (optionally)
(EXCL or SHARE), right? @@@ What aboutWRONLY (for a printer,
for example)?

Useusbddetach()to detach from the device.

You’d generally call this function in your insertion callback (as passed
to theusbdconnect()function) to attach to the newly-inserted device.

usbd close pipe (usbd pipe t * pipe)

This function closes a pipe (passed via thepipeargument) previously
opened by theusbdopenpipe()function.

usbd connect (@@@TBD@@@)

This function creates a connection to the USB stack. It provides
notification of insertion / removal of devices through the
usbd entry t * entryparameter’s callouts. Notification can be
limited to specific devices by using theclass, sclass(subclass),
protocol, did (device ID), andvid (vendor ID) parameters. Any
number of those parameters can be the wildcard constant
USBD CONNECT WILDCARD. Thepathparameter is used to specify
which USB stack to connect to. The default (recommended) stack can
be specified by using the manifest constantUSBD DFLT STACK.

Important! This function creates a thread on your behalf, which is
used by the library to monitor the USB stack for device insertion or
removal. The implication is that your insertion and removal callback
functions are called by this new thread; therefore you’ll have to
ensure that any common resources used between that thread and any
other thread(s) in your class driver are properly protected (e.g., via a
mutex).

☞

Useusbddisconnect()to destroy the connection after you’re done
with it.

162 Chapter 11 � USB Drivers

USB Driver Library reference

usbd detach (@@@TBD@@@)

This routine releases the ownership of the device back to the stack.
The device must have been attached usingusbdattach().

usbd disconnect (@@@TBD@@@)

This function disconnects from the USB stack. Theconnection
parameter is the one previously obtained from theusbdconnect()
function.

int usbd free (void * p)

Frees memory allocated byusbdalloc() above.

int usbd free dev (usbd device t * dev)

Frees memory allocated byusbdalloc dev()above.

int usbd free urb (urb t * urb)

Frees memory allocated byusbdalloc urb() above.

int usbd get desc (usbd device hdlt t * dhdl, uint32
type, uint32 index, uint16 langid, usbd addr t addr,
int len)

Retrieves descriptors defined by thetypeparameter; one of the
following:

� USB DESC CONFIGURATION

� USB DESC DEVICE

� USB DESC ENDPOINT

� USB DESC INTERFACE

Chapter 11 � USB Drivers 163

USB Driver Library reference

� USB DESC STRING

The descriptor is returned into the data area pointed to byaddr and is
limited to lenbytes. In cases where more than one descriptor can be
returned for a given request, theindexargument is used to indicate
which one is to be returned. (Use the value0 to indicate the first or
only one.) The following descriptor type definitions are available
(conforming to the layout mandated by the USB specification) in the
include-file<@@@sys???/usb.h> and correspond to the descriptor
typemanifests (above):

� usb configuration descriptor t

� usb device descriptor t

� usb endpoint descriptor t

� usb interface descriptor t

� usb string descriptor t

The data structure definitions for the individual descriptor types are
detailed below, under “Structures.”

usbd hcd info (@@@TBD@@@)

@@@ Does stuff, eh? HCD == Host Controller Driver

Refer to the structure definition section, underusbd hcd info t

for information on the returned data.

usbd io (@@@TBD@@@)

This routine submits a previously-setup URB (from one of the
functionsusbdsetupbulk(), usbdsetupfeature(), usbdsetupintr(),
usbdsetupisoch(), or usbdsetupvendor(), below) to the USB stack.

This function is the one thatactuallymakes the data transfer happen;
the setup functions simply set up the URB for the data transfer.

164 Chapter 11 � USB Drivers

USB Driver Library reference

usbd open pipe (@@@TBD@@@)

This function initializes the pipe described by the
usb endpoint descriptor t * descparameter. The pipe handle
is returned through the pointer topipe. The pipe may be closed via
usbdclosepipe().

usbd reset pipe (usbd pipe t * pipe)

Clears a stall condition on an endpoint identified by the pipepipe.

usbd select config (@@@TBD@@@)

@@@ Does stuff, eh?

usbd select interface (@@@TBD@@@)

@@@ Does stuff, eh?

usbd setup bulk (@@@TBD@@@)

Sets up an URB for a bulk transfer operation, which can be triggered
by a subsequent call tousbdio(). @@@ describe parameters

usbd setup feature (@@@TBD@@@)

Sets up an URB for a feature transfer operation, which can be
triggered by a subsequent call tousbdio(). @@@ describe
parameters

usbd setup intr (@@@TBD@@@)

Sets up an URB for an interrupt transfer operation, which can be
triggered by a subsequent call tousbdio(). @@@ describe
parameters

Chapter 11 � USB Drivers 165

USB Driver Library reference

usbd setup isoch (@@@TBD@@@)

Sets up an URB for an isochronous transfer operation, which can be
triggered by a subsequent call tousbdio(). @@@ describe
parameters

usbd setup vendor (@@@TBD@@@)

Sets up an URB for a vendor transfer operation, which can be
triggered by a subsequent call tousbdio(). @@@ describe
parameters

usbd status (@@@TBD@@@)

Returns status information on an URB.

The following structure definitions are used in conjunction with theStructures

functions listed above:

urb t

The structure is formally defined as:

typedef struct urb {
// @@@ is this guy opaque or not?
// @@@ if not, where do I find it?
} urb t;

The members are defined as follows:

@@@member

@@@definition

166 Chapter 11 � USB Drivers

USB Driver Library reference

usb configuration descriptor t

The structure is formally defined as:

typedef struct usb configuration descriptor {
uint8 bLength;
uint8 bDescriptorType;
uint16 wTotalLength;
uint8 bNumInterfaces;
uint8 bConfigurationValue;
uint8 iConfiguration;
uint8 bmAttributes;
uint8 MaxPower;

} usb configuration descriptor t;

The members are defined as follows:

bLength Size of this structure.

bDescriptorType

Contains the value@@@.

wTotalLength @@@?

bNumInterfaces The number of interfaces present.

bConfigurationValue

@@@?

iConfiguration @@@?

bmAttributes @@@?

MaxPower @@@maximum power in @@@ (units, mA?)

usb device descriptor t

The structure is formally defined as:

Chapter 11 � USB Drivers 167

USB Driver Library reference

typedef struct usb device descriptor {
uint8 bLength;
uint8 bDescriptorType;
uint16 bcdUSB;
uint8 bDeviceClass;
uint8 bDeviceSubClass;
uint8 bDeviceProtocol;
uint8 bMaxPacketSize0;
uint16 idVendor;
uint16 idProduct;
uint16 bcdDevice;
uint8 iManufacturer;
uint8 iProduct;
uint8 iSerialNumber;
uint8 bNumConfigurations;

} usb device descriptor t;

The members are defined as follows:

bLength Size of this structure.

bDescriptorType

Contains the value@@@.

bcdUSB @@@?

bDeviceClass The device class.

bDeviceSubClass

The device subclass.

bDeviceProtocol

@@@?

bMaxPacketSize0

Maximum packet size for endpoint 0 (the control
endpoint).

idVendor Vendor ID.

168 Chapter 11 � USB Drivers

USB Driver Library reference

idProduct Product ID.

bcdDevice @@@?

iManufacturer @@@?

iProduct @@@?

iSerialNumber @@@?

bNumConfigurations

@@@?

usb endpoint descriptor t

The structure is formally defined as:

typedef struct usb endpoint descriptor {
uint8 bLength;
uint8 bDescriptorType;
uint8 bEndpointAddress;
uint8 bmAttributes;
uint16 wMaxPacketSize;
uint8 bInterval;

} usb endpoint descriptor t;

The members are defined as follows:

bLength Size of this structure.

bDescriptorType

Contains one of (@@@ at least):
USB ISOCHRONOUSENDPOINT,
USB BULK ENDPOINT, or
USB INTERRUPT ENDPOINT.

bEndpointAddress

@@@?

Chapter 11 � USB Drivers 169

USB Driver Library reference

bmAttributes @@@?

wMaxPacketSize

Maximum packet size for this endpoint.

bInterval @@@ speed? transfer rate? in what units?

usb interface descriptor t

The structure is formally defined as:

typedef struct usb interface descriptor {
uint8 bLength;
uint8 bDescriptorType;
uint8 bInterfaceNumber;
uint8 bAlternateSetting;
uint8 bNumEndpoints;
uint8 bInterfaceClass;
uint8 bInterfaceSubClass;
uint8 bInterfaceProtocol;
uint8 iInterface;

} usb interface descriptor t;

The members are defined as follows:

bLength Size of this structure.

bDescriptorType

Contains the value@@@.

bInterfaceNumber

@@@?

bAlternateSetting

@@@?

bNumEndpoints

The number of endpoints.

170 Chapter 11 � USB Drivers

USB Driver Library reference

bInterfaceClass

@@@?

bInterfaceSubClass

@@@?

bInterfaceProtocol

@@@?

iInterface @@@?

usb string descriptor t

The structure is formally defined as:

typedef struct usb string descriptor {
uint8 bLength;
uint8 bDescriptorType;
uint16 bString [1];

} usb string descriptor t;

The members are defined as follows:

bLength Size of this structure.

bDescriptorType

Contains the value@@@.

bString The returned string, in 16 bits-per-character encoding as
per the specified language (@@@izit
UTF-something-or-other?@@@).

usbd connection t

Theusbd connection t structure is a member of bothstruct

usbd device ctrl andusbd device hdl t , and represents
@@@

The structure is formally defined as:

Chapter 11 � USB Drivers 171

USB Driver Library reference

typedef struct usbd connection {
int fd;
TAILQ HEAD (, usbd device handle) dlist;
usbd entry t * entry;

uint32 flags;
uint32 class;
uint32 sub class;
uint32 protocol;
uint32 device id;
uint32 vendor id;
uint32 rsvd [8];

} usbd connection t;

The members are defined as follows:

fd @@@?

dlist @@@?

entry @@@?

flags @@@?

class Device class.

subclass Device subclass.

protocol @@@?

deviceid Device ID.

vendorid Vendor ID.

rsvd Reserved, do not examine or modify.

struct usbd device ctrl

Thestruct usbd device ctrl structure is used for @@@

The structure is formally defined as follows:

172 Chapter 11 � USB Drivers

USB Driver Library reference

struct usbd device ctrl {
TAILQ HEAD (, usbd device) dlist;
usbd connection t * connection;
usbd entry t * entry;

};

The members are defined as follows:

dlist @@@?

connection @@@?

entry @@@?

usbd device hdl t

Theusbd device hdl t structure is a member of
usbd device t and represents @@@

The structure is formally defined as:

typedef struct usbd device handle {
usbd connection t * uhdl;
TAILQ ENTRY (usbd device handle) dlink;

uint32 dev path;
uint32 dev addr;
uint32 dev cfg;
uint32 dev iface;

TAILQ HEAD (, usbd pipe) plist;
uint32 rsvd [8];

} usbd device hdl t;

The members are defined as follows:

uhdl @@@?

dlink @@@?

devpath @@@?

Chapter 11 � USB Drivers 173

USB Driver Library reference

devaddr @@@?

devcfg @@@?

dev iface @@@?

plist @@@?

rsvd Reserved, do not examine or modify.

usbd device t

Theusbd device t structure is used for @@@.

The structure is formally defined as:

typedef struct usbd device {
TAILQ ENTRY (usbd device) dlink;
void * dext;
usbd device hdl t * dhdl;
uint32 t dstatus;
uint32 t dflags;
uint32 t dev addr;
uint32 t dev conf;
uint32 t dev iface;
uint32 t verbosity;

} usbd device t;

The members are defined as follows:

dlink @@@?

dext @@@?

dhdl @@@?

dstatus @@@?

dflags @@@?

devaddr Device address.

174 Chapter 11 � USB Drivers

USB Driver Library reference

devconf Device configuration.

dev iface Device interface.

verbosity @@@?

usbd entry t

Theusbd entry t structure is passed tousbdconnect()to provide
callback functions.

The structure is formally defined as:

typedef struct usbd entry {
uint32 nentries;

void (* insertion)
(uint32 rsvd,

uint32 dev addr,
uint32 class,
uint32 sclass,
uint32 proto,
uint32 did,
uint32 vid);

void (* removal)
(uint32 dev addr,

usbd device t *devptr);
} usbd entry t;

The members are defined as follows:

nentries The number of entries in the structure. For the structure
as shown above, this would be the value2.

insertion Callback function to call when an insertion of a USB
device is detected. Filtering of the particular type of
USB device is achieved via theusbdconnect()
function’s parameters. The callback function is called

Chapter 11 � USB Drivers 175

USB Driver Library reference

with parameters describing the device that was
detected:class, sclass, proto, did, andvid contain the
class, subclass, protocol, device ID, and vendor ID
(respectively). The parameterdevaddr contains the
USB address of the device.

removal An optional callback function to call when a USB
device is removed. If you don’t wish to supply a
removal()function, specify the constantNULL.

Note that the insertion and removal functions are called from a thread
that’s created by theusbdconnect()function, so you must take care to
ensure that any resources shared between that thread and any other
thread(s) are properly protected (e.g. via a mutex).

☞

usbd hcd info t

Theusbd hcd info t structure is filled byusbdhcd info(), above,
and contains information about the Host Controller Driver (HCD).

The structure is formally defined as:

typedef struct usbd hcd info {
uint32 version;
uint32 capabilities;
uint32 bandwidth;
uint32 rsvd [12];

cfg info t cfg; // @@@where’s cfg info t defined?
} usbd hcd info t;

The members are defined as follows:

version Top 16 bits represent the USB version, and the
bottom 16 bits represent the stack version.

176 Chapter 11 � USB Drivers

USB Driver Library reference

capabilities Capabilities; one or more of the following bit values:
CAP CNTL, CAP BULK, CAP INTR, CAP ISOCH,
CAP LOW SPEED, andCAP HIGH SPEED.

bandwidth The currently allocated bandwidth in @@@ (units).

rsvd Reserved, do not examine or modify.

cfg @@@?

usbd pipe t

Theusbd pipe t structure is the handle used to identify a pipe.

The structure is formally defined as:

typedef struct usbd pipe {
usbd device hdl t * dev;
TAILQ ENTRY (usbd pipe) plink;

uint32 type;
uint32 endpoint;
uint32 interval;
uint32 packet size;
uint32 reserved [4];

} usbd pipe t;

The members are defined as follows:

dev @@@?

plink @@@?

type @@@?

endpoint @@@?

interval @@@?

packetsize @@@?

reserved Reserved, do not examine or modify.

Chapter 11 � USB Drivers 177

USB Skeleton Driver

USB Skeleton Driver

The following annotated code sample shows the skeletal outline of a
typical USB class driver, which conforms to the general outline
presented in the USB Driver Library reference above.

// work in progress...
// Example class driver.

#include <stdio.h>

#include <errno.h>

#include <stddef.h>
#include <signal.h>

#include <pthread.h>

#include <sys/usbdi.h>

#include "skel.h"

void skel write complete(urb t *urb, void *chdl)

{

chdl = chdl;

// notify io -blk, io -net of status
pthread sleepon lock();

pthread sleepon signal(urb);

pthread sleepon unlock();
}

int skel write(void *ihdl, void *dptr, uint32 len)
{

uint32 urb status;

uint32 usb status;
uint32 residual;

skel ext t *ext;

usb device t *sdev;

sdev = (usb device t *)ihdl;

ext = (skel ext t *)sdev ->ext;

if((urb = usbd alloc urb(0, 0)) == NULL) {
return(ENOMEM);

}

if((uptr = usbd alloc(0, len)) == NULL) {

usbd free urb(urb);

return(ENOMEM);
}

memcpy(uptr, dptr, len);

usbd setup bulk(urb, NULL, USBD DIR OUT, uptr, len);

if(usbd io(urb, ext ->ep bout, skel write complete, sdev, USBD TIME DEFAULT)) {

usbd free urb(urb);

usbd free(uptr);
return(EIO);

178 Chapter 11 � USB Drivers

USB Skeleton Driver

}

pthread sleepon lock();

while(usbd status(urb, &urb status, &usb status, &residual)) {
pthread sleepon wait(urb);

}

pthread sleepon unlock();

usbd status(urb, &urb status, &usb status, &residual);

usbd free urb(urb);

usbd free(uptr);
return((urb status == USBD REQ CMP) ? EOK : EIO);

}

int skel setup pipes(usb device t *sdev)

{

uint32 ep;
uint32 scan;

uint32 found;

usb device descriptor t ddesc;
usb endpoint descriptor t edesc;

skel ext t *ext;

ext = (skel ext t *)sdev ->ext;

scan = SKEL CONTROLEP | SKEL BLKIN EP | SKEL BLKOUT EP;
found = 0;

if(usbd get desc(sdev ->dhdl, USB DESC DEVICE, 0, 0,
(usbd addr t *)&ddesc, sizeof(ddesc)) == EOK) {

if(usbd open pipe(sdev ->dhdl, &ddesc, &ext ->ep cntl) == EOK) {

found |= SKEL CONTROLEP;
}

}

for(ep = 0; ep < USB MAX ENDPOINT; ep++) {

if(usbd get desc(sdev ->dhdl, USB DESC ENDPOINT, ep, 0,

(usbd addr t *)&edesc, sizeof(edesc))) {
continue;

}

switch(edesc.bDescriptorType) {
case USB ISOCHRONOUSENDPOINT:

break;

case USB BULK ENDPOINT:

switch(edesc.bEndpointAddress & USB EP DIR) {
case USB EP DIR OUT:

if(usbd open pipe(sdev ->dhdl, &edesc,

&ext ->ep bout) == EOK) {
found |= SKEL BULKOUTEP;

}

break;

case USB EP DIR IN:

if(usbd open pipe(sdev ->dhdl, &edesc,
&ext ->ep bin) == EOK) {

found |= SKEL BULKIN EP;

}
break;

}

Chapter 11 � USB Drivers 179

USB Skeleton Driver

break;

case USB INTERRUPT ENDPOINT:

break;
}

}

return((found == scan) ? SUCCESS : ERROR);
}

void skel removal(uint32 dev addr, usbd device t *hdl)

{

dev addr = dev addr;

// free resources

detach from io -blk, io -net, etc...
TAILQ REMOVE(&SkelCtrl.dlist, hdl, dlink);

usbd detach(hdl);

usbd free dev(hdl);
}

void skel insertion(uint32 rsvd, uint32 dev addr, uint32 class,
uint32 sclass, uint32 proto, uint32 did, uint32 vid)

{

usbd device t *sdev;
usb device descriptor t ddesc;

usb interface descriptor t idesc;
usb configuration descriptor t cdesc;

if((sdev = usbd alloc dev(sizeof(skel ext t))) == NULL) {
perror("usbd alloc dev: ");

return;

}

if(usbd attach(SkelCntl.connection, dev addr, USBD ATTACH RDWR, &sdev->dhdl)) {

perror("usbd attach: ");
usbd free dev(sdev);

return;

}

if(usbd get desc(sdev ->dhdl, USB DESC DEVICE, 0, 0,

(usbd addr t *)&ddesc, sizeof(ddesc))) {
perror("usbd get desc (device): ");

usbd detach(sdev ->dhdl);
usbd free dev(sdev);

return;

}

if(usbd get desc(sdev ->dhdl, USB DESC CONFIGURATION, 0, 0,

(usbd addr t *)&cdesc, sizeof(cdesc))) {
perror("usbd get desc (configuration): ");

usbd detach(sdev ->dhdl);

usbd free dev(sdev);
return;

}

if(usbd get desc(sdev ->dhdl, USB DESC INTERFACE, 0, 0,

(usbd addr t *)&idesc, sizeof(idesc))) {

perror("usbd get desc (interface): ");
usbd detach(sdev ->dhdl);

usbd free dev(sdev);

180 Chapter 11 � USB Drivers

USB Skeleton Driver

return;
}

// selecting the configuration/interface will depend on your device
if(usbd select config(sdev ->dhdl, config)) {

perror("usbd select config: ");

usbd detach(sdev ->dhdl);
usbd free dev(sdev);

return;
}

if(usbd select interface(sdev ->dhdl, config, interface, alternate)) {
perror("usbd select interface: ");

usbd detach(sdev ->dhdl);

usbd free dev(sdev);
return;

}

if(skel setup pipes(sdev)) {

fprintf(stderr, "skel setup pipes: \n");

usbd detach(sdev ->dhdl);
usbd free dev(sdev);

return;

}

// attach to io -blk, io -net, etc...

// add sdev to device list

TAILQ INSERT TAIL(&SkelCtrl.dlist, sdev, dlink);
}

int main(int argc, char *argv[])
{

sigset t set;

siginfo t info;

SkelCntl.entry.nentries = 2;

SkelCntl.entry.removal = skel removal;
SkelCntl.entry.insertion = skel insertion;

if(usbd connect(USBD DFLT STACK, 0, &SkelCtrl.entry, USBD CONNECTWILDCARD,
USBD CONNECTWILDCARD, USBDCONNECTWILDCARD, SKEL DEVICE ID,

SKEL VENDORID, &SkelCntl.connection)) {
perror("usbd connect: ");

exit(EXIT FAILURE);

}

// become a resource manager at this point, or whatever...

// in this example, we just wait for a termination signal
sigfillset(&set);

sigdelset(&set, SIGTERM);

pthread sigmask(SIG BLOCK, &set, NULL);

sigemptyset(&set);

sigaddset(&set, SIGTERM);
while(SignalWaitinfo(&set, &info) == -1)

;

// free resources

Chapter 11 � USB Drivers 181

USB Skeleton Driver

if(usbd disconnect(SkelCntl.connection)) {
perror("usbd disconnect: ");

exit(EXIT FAILURE);

}
exit(EXIT SUCCESS);

}

182 Chapter 11 � USB Drivers

Appendix A
References

In this appendix. . .
References

Appendix: A � References 183

References

References

The following publications are useful for gaining a good
understanding of the QNX Neutrino operating system:

� Building Embedded Systems (QSSL)

� C Library Reference (QSSL)

� Programmer’s Guide (QSSL)

� System Architecture Guide (QSSL)

The audio driver APIs are based on the Linux ALSA (“AdvancedAudio driver
references Linux Sound Architecture”) audio standard. For more information,

visit www.alsa -project.org on the web.

CAM spec? Various manufacturer docs, linux drivers...Block I/O driver
references

POSIX specs?Character I/O
driver references

Various manufacturer docs, linux drivers...Graphics driver
references

Various manufacturer docs, linux drivers...Network driver
references

Various manufacturer docs, linux drivers...PCI driver
references

Various manufacturer docs, linux drivers... Also,www.usb.org .USB driver
references

Appendix: A � References 185

Glossary

Glossary 187

Alpha blending is a technique of portraying transparency whenAlpha (graphics)

drawing an object. It combines the color of an object to be drawn (the
source) and the color of whatever the object is to be drawn on top of
(the destination). The higher the portion of source color, the more
opaque the object looks.

Advanced Linux Sound Architecture; an industry standard for audioALSA

devices for the Linux community. Our sound drivers are based on the
API presented in the specification.

A chunk of memory that’s not identified by a name; for example, youAnonymous Memory

may require a chunk of memory in which to perform a DMA transfer,
but you don’t need to identify that memory to other processes.

Application Program Interface; the interface through whichAPI

applications access services. This is the “published” interface that
applications should use when communicating with a driver.

BLock Transfer (sometimes “BLIT” for BLock Image Transfer);BLT (graphics)

generally refers to the ability to move a rectangular array of pixels
from one location to another. The source and destination may be on
the video card or the system RAM, depending on the configuration.

A driver for a device that is accessed in a “block” manner — that is,Block (driver)

accessed as a collection of bytes, rather than on an individual
byte-by-byte basis. Contrast withCharacter (driver) .

Common Access Method; a specification for @@@CAM

A driver for a device that is accessed on a character-by-characterCharacter (driver)

basis. Contrast withBlock (driver) .

Chroma operations are a method of masking out pixel data during aChroma keying
(graphics) rendering operation (copies, image rendering, rectangles, etc.) based

on a chroma color value. The four basic modes of operation are:
masking on the source key color, masking on the destination key

Glossary 189

color, masking on everything but the source key color, and masking
on everything but the destination key color.

The correct spelling for “color.”: -) See also “labour,” “neighbour,”Colour

and “judgement.”

@@@ See also Endpoint Descriptor (USB) and Device DescriptorConfiguration Descriptor
(USB) (USB).

@@@ See also Endpoint Descriptor (USB) and ConfigurationDevice Descriptor (USB)

Descriptor (USB).

Direct Memory Access; a technique used by hardware peripherals toDMA

transfer data between the memory subsystem and the peripheral
without involving the CPU in the data transfer itself.

Also known as a shared object; an object module that can be loaded atDLL

runtime to augment the process that it’s loaded into.

@@@ a technique that makes use of two buffers; one is the “current”Double Buffer (graphics)

buffer that’s displayed on the device, and the second is the “drawing”
buffer that’s being updated. When the drawing buffer is updated, the
graphics card is told to use that buffer as the current buffer, and the
previously-current buffer becomes the drawing buffer. Allows updates
to an image to occur without any intermediate drawing operations
being visible; useful for animation.

Display Power Management System; a method of putting the monitorDPMS (graphics)

into one of several low-power modes defined by VESA.

@@@ See also Device Descriptor (USB) and ConfigurationEndpoint Descriptor
(USB) Descriptor (USB).

190 Glossary

@@@Endpoint (USB)

First In First Out — a queueing order in which the oldest entry addedFIFO

to a queue is the first entry that’s removed from the queue, then the
next-oldest entry, and so on. Contrast with LIFO. Also refers to a
hardware component that implements this queueing behaviour by
typically using a memory component for the storage of fixed-size
entries.

The memory area that’s currently being used for display.Frame Buffer (graphics)

A transfer mode characterized by continuous, realtime requirements.Isochronous (USB)

For example, a video stream must arrive at a defined rate, and hence
must reserve a certain amount of bandwidth.

Last In First Out — a queueing order in which the most-recent entryLIFO

added to a queue is the first entry that’s removed from the queue, then
the next-most-recent, and so on. Contrast with FIFO.

Neutrino’s primary inter-process communications scheme. MessagesMessage Passing

are sent from client to server, with the client blocking until the server
replies. The server can block, waiting for messages to arrive.

@@@ North American Television Standard for Colour (?) or NeverNTSC (graphics)

The Same Colour; a standard defining the electrical signal used to
represent video. Contrast with PAL and SECAM.

Phase Alternate Line; a European standard defining the electricalPAL (graphics)

signal used to represent video. Contrast with NTSC and SECAM.
Also, to confuse the issue, the abbreviation “PAL” is used for palette.

A (usually small) number of colours represented by an index asPalette (graphics)

opposed to “directly” by red, green, and blue components. Used to
save on the amount of memory space provided on a graphics card, at
the expense of providing a full spectrum of colours.

Glossary 191

Peripheral Component Interconnect; a hardware bus present on manyPCI

types of systems that allows peripherals to be interfaced to the CPU.

An address that corresponds directly to the signals emitted on the busPhysical Address

(ISA, PCI, etc.) Generally used with DMA devices. Contrast with
Virtual address.

In the context of USB, a pipe is a connection between a client programPipe (USB)

and an endpoint (and does not refer to a traditional UNIX pipe).

Portable Operating System Interface; a specification defining variousPOSIX

commands and APIs for a conforming system.

QNX Software Systems Limited; the company that manufactures theQSSL

QNX family of operating systems, of which Neutrino is the latest
member.

A device driver for Neutrino that handles certain well-definedResource Manager (or
“resmgr”) messages from clients. These messages correspond to various

file-descriptor based functions that the client of the driver calls.

A format for storing pixel colours where the “R” componentRGB format (graphics)

represents the intensity of red, “G” for green, and “B” for blue.
Contrast with YUV format. Also used to refer to the signals present
on a connector, whereby the red, green, and blue components of the
colour are presented on separate pins.

@@@ Raster Operations.ROPS (graphics)

@@@???@@@ Contrast with NTSC and PAL.SECAM (graphics >

Another term for “horizontal line.”Span (graphics)

192 Glossary

The number of bytes that must be added to a given memory offset toStride (graphics)

get to the next pixel below the given one. This is a function of the
memory organization of the graphics card.

@@@Surface (graphics)

Universal Serial Bus; an interconnect bus targetted for peripherals.USB

Video Electronics Standards Association.VESA (graphics)

An address that doesnot (necessarily) correspond with the signalsVirtual Address

emitted onto the hardware bus. Such an address is local to a process;
this means that two different processes running on the same processor
may in fact both have the same virtual address, but each process will
have the virtual address translated to different physical addresses by
the MMU (Memory Management Unit). Contrast with Physical
Address.

Very Local Area Network; used to denote an (often) proprietaryVLAN

network architecture often used for high-availability systems.

A format for storing pixel colours where the “Y” componentYUV format (graphics)

represents @@@, the “U” component represents @@@, and the “V”
component represents @@@. Contrast with RGB format.

Glossary 193

